Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Cancer ; 148(9): 2193-2202, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197272

RESUMO

Mammograms contain information that predicts breast cancer risk. We developed two novel mammogram-based breast cancer risk measures based on image brightness (Cirrocumulus) and texture (Cirrus). Their risk prediction when fitted together, and with an established measure of conventional mammographic density (Cumulus), is not known. We used three studies consisting of: 168 interval cases and 498 matched controls; 422 screen-detected cases and 1197 matched controls; and 354 younger-diagnosis cases and 944 controls frequency-matched for age at mammogram. We conducted conditional and unconditional logistic regression analyses of individually- and frequency-matched studies, respectively. We estimated measure-specific risk gradients as the change in odds per standard deviation of controls after adjusting for age and body mass index (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). For interval, screen-detected and younger-diagnosis cancer risks, the best fitting models (OPERAs [95% confidence intervals]) involved: Cumulus (1.81 [1.41-2.31]) and Cirrus (1.72 [1.38-2.14]); Cirrus (1.49 [1.32-1.67]) and Cirrocumulus (1.16 [1.03 to 1.31]); and Cirrus (1.70 [1.48 to 1.94]) and Cirrocumulus (1.46 [1.27-1.68]), respectively. The AUCs were: 0.73 [0.68-0.77], 0.63 [0.60-0.66], and 0.72 [0.69-0.75], respectively. Combined, our new mammogram-based measures have twice the risk gradient for screen-detected and younger-diagnosis breast cancer (P ≤ 10-12 ), have at least the same discriminatory power as the current polygenic risk score, and are more correlated with causal factors than conventional mammographic density. Discovering more information about breast cancer risk from mammograms could help enable risk-based personalised breast screening.


Assuntos
Mamografia/métodos , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Fatores de Risco
2.
Int J Cancer ; 147(2): 375-382, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31609476

RESUMO

Interval breast cancers (those diagnosed between recommended mammography screens) generally have poorer outcomes and are more common among women with dense breasts. We aimed to develop a risk model for interval breast cancer. We conducted a nested case-control study within the Melbourne Collaborative Cohort Study involving 168 interval breast cancer patients and 498 matched control subjects. We measured breast density using the CUMULUS software. We recorded first-degree family history by questionnaire, measured body mass index (BMI) and calculated age-adjusted breast tissue aging, a novel measure of exposure to estrogen and progesterone based on the Pike model. We fitted conditional logistic regression to estimate odds ratio (OR) or odds ratio per adjusted standard deviation (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). The stronger risk associations were for unadjusted percent breast density (OPERA = 1.99; AUC = 0.66), more so after adjusting for age and BMI (OPERA = 2.26; AUC = 0.70), and for family history (OR = 2.70; AUC = 0.56). When the latter two factors and their multiplicative interactions with age-adjusted breast tissue aging (p = 0.01 and 0.02, respectively) were fitted, the AUC was 0.73 (95% CI 0.69-0.77), equivalent to a ninefold interquartile risk ratio. In summary, compared with using dense breasts alone, risk discrimination for interval breast cancers could be doubled by instead using breast density, BMI, family history and hormonal exposure. This would also give women with dense breasts, and their physicians, more information about the major consequence of having dense breasts-an increased risk of developing an interval breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Estrogênios/metabolismo , Mamografia/métodos , Anamnese/métodos , Progesterona/metabolismo , Adulto , Idoso , Austrália , Índice de Massa Corporal , Densidade da Mama , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Curva ROC , Inquéritos e Questionários
3.
Breast Cancer Res ; 20(1): 152, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545395

RESUMO

BACKGROUND: Case-control studies show that mammographic density is a better risk factor when defined at higher than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers. METHOD: We conducted a nested case-control study within the prospective Melbourne Collaborative Cohort Study including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls, respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA), calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information criterion (ΔBIC). RESULTS: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85-2.92); all ΔBIC > 14), and the association with BMI was independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all P > 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P > 0.07). CONCLUSION: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk, while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically important information about different outcomes.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Processamento de Imagem Assistida por Computador/métodos , Mamografia/métodos , Idoso , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Medição de Risco/métodos , Fatores de Risco , Software
4.
Radiology ; 286(2): 433-442, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29040039

RESUMO

Purpose To compare three mammographic density measures defined by different pixel intensity thresholds as predictors of breast cancer risk for two different digital mammographic systems. Materials and Methods The Korean Breast Cancer Study included 398 women with invasive breast cancer and 737 control participants matched for age at mammography (±1 year), examination date, mammographic system, and menopausal status. Mammographic density was measured by using the automated Laboratory for Individualized Breast Radiodensity Assessment (LIBRA) software and the semiautomated Cumulus software at the conventional threshold (Cumulus) and at increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were Box-Cox-transformed and adjusted for age, body mass index, and menopausal status. Conditional logistic regression was used to estimate risk associations. For calculation of measures of predictive value, the change in odds per standard deviation (OPERA) and the area under the receiver operating characteristic curve (AUC) were used. Results For dense area, with use of the direct conversion system the OPERAs were 1.72 (95% confidence interval [CI]: 1.38, 2.15) for LIBRA, 1.58 (95% CI: 1.27, 1.97) for Cumulus, 2.04 (95% CI: 1.60, 2.59) for Altocumulus, and 3.48 (95% CI: 2.45, 4.47) for Cirrocumulus (P < .001). The corresponding AUCs were 0.70, 0.69, 0.76, and 0.89, respectively. With use of the indirect conversion system, the corresponding OPERAs were 1.50 (95% CI: 1.28, 1.76), 1.36 (95% CI: 1.16, 1.59), 1.40 (95% CI: 1.19, 1.64), and 1.47 (95% CI: 1.25, 1.73) (P < .001) and the AUCs were 0.64, 0.60, 0.61, and 0.63, respectively. Conclusion It is possible that mammographic density defined by higher pixel thresholds could capture more risk-predicting information with use of a direct conversion mammographic system; the mammographically bright, rather than white, regions are etiologically important. © RSNA, 2017.


Assuntos
Densidade da Mama , Neoplasias da Mama/patologia , Área Sob a Curva , Neoplasias da Mama/diagnóstico por imagem , Estudos de Casos e Controles , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Fatores de Risco
5.
BMJ Open ; 9(12): e031041, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892647

RESUMO

INTRODUCTION: For women of the same age and body mass index, increased mammographic density is one of the strongest predictors of breast cancer risk. There are multiple methods of measuring mammographic density and other features in a mammogram that could potentially be used in a screening setting to identify and target women at high risk of developing breast cancer. However, it is unclear which measurement method provides the strongest predictor of breast cancer risk. METHODS AND ANALYSIS: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk. ETHICS AND DISSEMINATION: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3).


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mamografia , Estudos de Casos e Controles , Protocolos Clínicos , Feminino , Humanos , Cooperação Internacional , Valor Preditivo dos Testes , Medição de Risco/métodos
6.
Int J Epidemiol ; 46(2): 652-661, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338721

RESUMO

Background: Mammographic density defined by the conventional pixel brightness threshold, and adjusted for age and body mass index (BMI), is a well-established risk factor for breast cancer. We asked if higher thresholds better separate women with and without breast cancer. Methods: We studied Australian women, 354 with breast cancer over-sampled for early-onset and family history, and 944 unaffected controls frequency-matched for age at mammogram. We measured mammographic dense area and percent density using the CUMULUS software at the conventional threshold, which we call Cumulus , and at two increasingly higher thresholds, which we call Altocumulus and Cirrocumulus , respectively. All measures were Box-Cox transformed and adjusted for age and BMI. We estimated the odds per adjusted standard deviation (OPERA) using logistic regression and the area under the receiver operating characteristic curve (AUC). Results: Altocumulus and Cirrocumulus were correlated with Cumulus (r ∼ 0.8 and 0.6 , respectively) . For dense area, the OPERA was 1.62, 1.74 and 1.73 for Cumulus, Altocumulus and Cirrocumulus , respectively (all P < 0.001). After adjusting for Altocumulus and Cirrocumulus , Cumulus was not significant ( P > 0.6). The OPERAs for percent density were less but gave similar findings. The mean of the standardized adjusted Altocumulus and Cirrocumulus dense area measures was the best predictor; OPERA = 1.87 [95% confidence interval (CI): 1.64-2.14] and AUC = 0.68 (0.65-0.71). Conclusions: The areas of higher mammographically dense regions are associated with almost 30% stronger breast cancer risk gradient, explain the risk association of the conventional measure and might be more aetiologically important. This has substantial implications for clinical translation and molecular, genetic and epidemiological research.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia , Adulto , Austrália , Índice de Massa Corporal , Estudos de Casos e Controles , Detecção Precoce de Câncer , Reações Falso-Positivas , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Curva ROC , Sistema de Registros , Fatores de Risco , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA