Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Circ Res ; 127(6): 761-777, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32529949

RESUMO

RATIONALE: Identifying genetic markers for heterogeneous complex diseases such as heart failure is challenging and requires prohibitively large cohort sizes in genome-wide association studies to meet the stringent threshold of genome-wide statistical significance. On the other hand, chromatin quantitative trait loci, elucidated by direct epigenetic profiling of specific human tissues, may contribute toward prioritizing subthreshold variants for disease association. OBJECTIVE: Here, we captured noncoding genetic variants by performing epigenetic profiling for enhancer H3K27ac chromatin immunoprecipitation followed by sequencing in 70 human control and end-stage failing hearts. METHODS AND RESULTS: We have mapped a comprehensive catalog of 47 321 putative human heart enhancers and promoters. Three thousand eight hundred ninety-seven differential acetylation peaks (FDR [false discovery rate], 5%) pointed to pathways altered in heart failure. To identify cardiac histone acetylation quantitative trait loci (haQTLs), we regressed out confounding factors including heart failure disease status and used the G-SCI (Genotype-independent Signal Correlation and Imbalance) test1 to call out 1680 haQTLs (FDR, 10%). RNA sequencing performed on the same heart samples proved a subset of haQTLs to have significant association also to gene expression (expression quantitative trait loci), either in cis (180) or through long-range interactions (81), identified by Hi-C (high-throughput chromatin conformation assay) and HiChIP (high-throughput protein centric chromatin) performed on a subset of hearts. Furthermore, a concordant relationship between the gain or disruption of TF (transcription factor)-binding motifs, inferred from alternative alleles at the haQTLs, implied a surprising direct association between these specific TF and local histone acetylation in human hearts. Finally, 62 unique loci were identified by colocalization of haQTLs with the subthreshold loci of heart-related genome-wide association studies datasets. CONCLUSIONS: Disease and phenotype association for 62 unique loci are now implicated. These loci may indeed mediate their effect through modification of enhancer H3K27 acetylation enrichment and their corresponding gene expression differences (bioRxiv: https://doi.org/10.1101/536763). Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Epigenoma , Variação Genética , Insuficiência Cardíaca/genética , Histonas/genética , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Epigênese Genética , Epigenômica , Feminino , Predisposição Genética para Doença , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas
2.
J Mol Cell Cardiol ; 160: 15-26, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34146546

RESUMO

AIMS: Direct cardiac reprogramming represents an attractive way to reversing heart damage caused by myocardial infarction because it removes fibroblasts, while also generating new functional cardiomyocytes. Yet, the main hurdle for bringing this technique to the clinic is the lack of efficacy with current reprogramming protocols. Here, we describe our unexpected discovery that DMSO is capable of significantly augmenting direct cardiac reprogramming in vitro. METHODS AND RESULTS: Upon induction with cardiac transcription factors- Gata4, Hand2, Mef2c and Tbx5 (GHMT), the treatment of mouse embryonic fibroblasts (MEFs) with 1% DMSO induced ~5 fold increase in Myh6-mCherry+ cells, and significantly upregulated global expression of cardiac genes, including Myh6, Ttn, Nppa, Myh7 and Ryr2. RNA-seq confirmed upregulation of cardiac gene programmes and downregulation of extracellular matrix-related genes. Treatment of TGF-ß1, DMSO, or SB431542, and the combination thereof, revealed that DMSO most likely targets a separate but parallel pathway other than TGF-ß signalling. Subsequent experiments using small molecule screening revealed that DMSO enhances direct cardiac reprogramming through inhibition of the CBP/p300 bromodomain, and not its acetyltransferase property. CONCLUSION: In conclusion, our work points to a direct molecular target of DMSO, which can be used for augmenting GHMT-induced direct cardiac reprogramming and possibly other cell fate conversion processes.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Fibroblastos/citologia , Miócitos Cardíacos/citologia , Domínios Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/química , Animais , Benzamidas/farmacologia , Células Cultivadas , Dioxóis/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Transcrição GATA4/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Gravidez , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
4.
Atherosclerosis ; 362: 11-22, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36435092

RESUMO

BACKGROUND AND AIMS: Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS: We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS: Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.


Assuntos
Doença da Artéria Coronariana , Células Endoteliais , Humanos , Doença da Artéria Coronariana/genética , Alelos , Genótipo , Polimorfismo de Nucleotídeo Único
5.
Nat Commun ; 12(1): 4722, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354059

RESUMO

Mutations in the LaminA gene are a common cause of monogenic dilated cardiomyopathy. Here we show that mice with a cardiomyocyte-specific Lmna deletion develop cardiac failure and die within 3-4 weeks after inducing the mutation. When the same Lmna mutations are induced in mice genetically deficient in the LINC complex protein SUN1, life is extended to more than one year. Disruption of SUN1's function is also accomplished by transducing and expressing a dominant-negative SUN1 miniprotein in Lmna deficient cardiomyocytes, using the cardiotrophic Adeno Associated Viral Vector 9. The SUN1 miniprotein disrupts binding between the endogenous LINC complex SUN and KASH domains, displacing the cardiomyocyte KASH complexes from the nuclear periphery, resulting in at least a fivefold extension in lifespan. Cardiomyocyte-specific expression of the SUN1 miniprotein prevents cardiomyopathy progression, potentially avoiding the necessity of developing a specific therapeutic tailored to treating each different LMNA cardiomyopathy-inducing mutation of which there are more than 450.


Assuntos
Cardiomiopatia Dilatada/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Dependovirus/genética , Feminino , Humanos , Lamina Tipo A/deficiência , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA