Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 52016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27852438

RESUMO

Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs.


Assuntos
Diferenciação Celular/genética , Organogênese/genética , Medula Espinal/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Mosaicismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Transdução de Sinais/genética , Medula Espinal/irrigação sanguínea , Medula Espinal/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
Psychopharmacology (Berl) ; 225(2): 483-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22903389

RESUMO

RATIONALE: Evidence indicates cannabinoid receptor agonists impair performance in procedures to assess memory that may also be confounded by motivational or motor effects, both of which occur with cannabinoids. Thus, convergence of evidence from a variety of procedures that differ in motivation, attention, arousal and response requirements, but share a common reliance on memory, is required. There are no current reports on cannabinoid effects on mice tested in the radial arm maze. OBJECTIVES: The objective was to determine the effects of the cannabinoid agonist CP 55940 and the dependence of any such effects on the CB1 receptor using the CB1 receptor antagonist SR 141716A on two strains of mice in the eight-arm radial maze procedure. METHODS: Male C57BL/6J (N = 36) and C3H/HEJ (N = 12) mice were trained to a criterion and then were treated (IP) with vehicle + vehicle, SR 141716A + vehicle, vehicle + CP 55940 and SR 141716A + CP 55940 in a fully balanced mixed design prior to further tests in the maze. Reference (long-term) and working (short-term) memory were assessed. RESULTS: CP 55940 impaired performance of the reference memory task in the C57BL/6J strain but not the C3H/HEJ strain; SR 141716A reversed the effect of CP 55940 on these measures. CP 55940 also increased working memory errors in the C57BL/6J mice only, which was not affected by SR 141716A. CONCLUSION: The present study provides evidence for a strain-specific effect of a dose of CP 55940 on reference memory. While the cannabinoid agonist also impaired working memory in one strain, this effect was apparently not mediated by CB1 receptors.


Assuntos
Canabinoides/farmacologia , Cicloexanóis/farmacologia , Memória/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Rimonabanto , Especificidade da Espécie
3.
Psychopharmacology (Berl) ; 220(2): 405-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21947354

RESUMO

RATIONALE: There are inconsistent reports on the effects of cannabinoid agonists on prepulse inhibition of the startle reflex (PPI) with increases, decreases, and no effects. It has been hypothesized that the conflicting observations may be as a result of modulation of the effects of cannabinoid agonists by the regulation of corticosteroid release. OBJECTIVE: The purpose of the present study was to determine the effects of CP55940, a cannabinoid agonist, and metyrapone, a corticosteroid synthesis inhibitor on core temperature, motor activity, the startle reflex, and PPI. METHODS: Startle responses were measured in 64 male Wistar rats while varying startling stimulus intensities, analogous to dose-response curves. A stimulus potency measure (ES(50)) and a response measure, the maximal achievable response (R (MAX)) were derived from the stimulus-response curves. RESULTS: CP55940 reduced core temperature and motor activity; these effects were potentiated by metyrapone. CP55940 increased R (MAX) of startle in the absence of a prepulse by a corticosteroid-dependent mechanism but decreased it when metyrapone was administered before CP55940, a corticosteroid-independent mechanism. The inverse of stimulus potency (ES(50)) was not affected by either drug alone but was increased by the combined drugs. CP55940 increased the prepulse motor gating effects and decreased the prepulse sensory gating effects of the same prepulses but only when given after metyrapone. CONCLUSIONS: The most parsimonious interpretation of these effects is that CP55940 has some effects through corticosteroid-dependent actions and opposite effects by corticosteroid-independent actions. These two putative sites of actions affect stimulus gating opposite to their effects on response gating.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides , Cicloexanóis/farmacologia , Inibição Psicológica , Atividade Motora/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Masculino , Metirapona/farmacologia , Ratos , Ratos Wistar
4.
J Vis Exp ; (69): e4196, 2012 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-23183629

RESUMO

This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.


Assuntos
Criação de Animais Domésticos/métodos , Animais de Laboratório/fisiologia , Ciência dos Animais de Laboratório/métodos , Peixe-Zebra/fisiologia , Bem-Estar do Animal , Animais , Feminino , Masculino
5.
J Alzheimers Dis ; 28(2): 459-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22008261

RESUMO

There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.


Assuntos
Percepção de Cores/fisiologia , Aprendizagem por Discriminação/fisiologia , Memória/fisiologia , Peixe-Zebra/fisiologia , Análise de Variância , Animais , Comportamento Animal , Comportamento de Escolha/fisiologia , Feminino , Masculino , Aprendizagem em Labirinto , Análise Espectral
6.
J Alzheimers Dis ; 25(3): 433-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21460433

RESUMO

The E4 allele of the apolipoprotein E (ApoE) gene has been identified as a major risk factor for the development of late onset Alzheimer's disease (AD). However, the mechanisms by which this gene affects AD are not fully understood. Studies of ApoE knock-out (ApoE KO) mice have revealed an exacerbation of two major pathologies that are diagnostic of AD: neurofibrillary tangles and senile plaques. However, evidence as to whether these mice have cognitive deficits is not yet conclusive. This ambiguity may arise partly from confounds associated with reliance on limited memory models, primarily, the Morris water maze task. An 8-arm radial maze task was therefore used to measure spatial memory in the ApoE KO mice, compared to controls over time. Furthermore, the effectiveness of a combination antioxidant therapy (CAT), designed to slow down the progression of AD based on concepts of oxidative stress and inflammatory processes underlying the pathology, was tested on memory ability. A significant strain difference was observed with the ApoE KO mice performing better than controls in terms of reference memory and corrects entries. No significant strain difference was observed for performance in terms of working memory errors. No significant effect of the CAT supplementation was observed.


Assuntos
Doença de Alzheimer/complicações , Modelos Animais de Doenças , Transtornos da Memória/etiologia , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/genética , Análise de Variância , Animais , Antioxidantes/administração & dosagem , Apolipoproteínas E/deficiência , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/genética , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Placa Amiloide/genética , Placa Amiloide/patologia , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA