Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuropathol Appl Neurobiol ; 47(6): 781-795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797808

RESUMO

AIMS: We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell-cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS: Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS: We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS: Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell-cell interactions and cellular heterogeneity in developmental neuropathology.


Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Transdução de Sinais/fisiologia , Esclerose Tuberosa/metabolismo , Encéfalo/patologia , Deficiências do Desenvolvimento/patologia , Humanos , Imuno-Histoquímica , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
2.
Nat Commun ; 11(1): 4324, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859926

RESUMO

Immune-therapy is an attractive alternative therapeutic approach for targeting central nervous system (CNS) tumors and the constituency of the Tumor Immune Microenvironment (TIME) likely to predict patient response. Here, we describe the TIME of >6000 primarily pediatric CNS tumors using a deconvolution approach (methylCIBERSORT). We produce and validate a custom reference signature defining 11 non-cancer cell types to estimate relative proportions of infiltration in a panCNS tumor cohort spanning 80 subtypes. We group patients into three broad immune clusters associated with CNS tumor types/subtypes. In cohorts of medulloblastomas (n = 2325), malignant rhabdoid tumors (n = 229) and pediatric high-grade gliomas (n = 401), we show significant associations with molecular subgroups/subtypes, mutations, and prognosis. We further identify tumor-specific immune clusters with phenotypic characteristics relevant to immunotherapy response (i.e. Cytolytic score, PDL1 expression). Our analysis provides an indication of the potential future therapeutic and prognostic possibilities of immuno-methylomic profiling in pediatric CNS tumor patients that may ultimately inform approach to immune-therapy.


Assuntos
Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/terapia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Adolescente , Neoplasias do Sistema Nervoso Central/genética , Criança , Pré-Escolar , Estudos de Coortes , Glioma , Histonas/genética , Humanos , Leucócitos , Meduloblastoma/imunologia , Mutação , Prognóstico , Tumor Rabdoide
3.
Lancet Child Adolesc Health ; 4(2): 121-130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786093

RESUMO

BACKGROUND: Marked variation exists in the use of genomic data in tumour diagnosis, and optimal integration with conventional diagnostic technology remains uncertain despite several studies reporting improved diagnostic accuracy, selection for targeted treatments, and stratification for trials. Our aim was to assess the added value of molecular profiling in routine clinical practice and the impact on conventional and experimental treatments. METHODS: This population-based study assessed the diagnostic and clinical use of DNA methylation-based profiling in childhood CNS tumours using two large national cohorts in the UK. In the diagnostic cohort-which included routinely diagnosed CNS tumours between Sept 1, 2016, and Sept 1, 2018-we assessed how the methylation profile altered or refined diagnosis in routine clinical practice and estimated how this would affect standard patient management. For the archival cohort of diagnostically difficult cases, we established how many cases could be solved using modern standard pathology, how many could only be solved using the methylation profile, and how many remained unsolvable. FINDINGS: Of 484 patients younger than 20 years with CNS tumours, 306 had DNA methylation arrays requested by the neuropathologist and were included in the diagnostic cohort. Molecular profiling added a unique contribution to clinical diagnosis in 107 (35%; 95% CI 30-40) of 306 cases in routine diagnostic practice-providing additional molecular subtyping data in 99 cases, amended the final diagnosis in five cases, and making potentially significant predictions in three cases. We estimated that it could change conventional management in 11 (4%; 95% CI 2-6) of 306 patients. Among 195 historically difficult-to-diagnose tumours in the archival cohort, 99 (51%) could be diagnosed using standard methods, with the addition of methylation profiling solving a further 34 (17%) cases. The remaining 62 (32%) cases were unresolved despite specialist pathology and methylation profiling. INTERPRETATION: Together, these data provide estimates of the impact that could be expected from routine implementation of genomic profiling into clinical practice, and indicate limitations where additional techniques will be required. We conclude that DNA methylation arrays are a useful diagnostic adjunct for childhood CNS tumours. FUNDING: The Brain Tumour Charity, Children with Cancer UK, Great Ormond Street Hospital Children's Charity, Olivia Hodson Cancer Fund, Cancer Research UK, and the National Institute of Health Research.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Metilação de DNA/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Terapia de Alvo Molecular , Biomarcadores Tumorais/genética , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Criança , Humanos , Estudos Retrospectivos , Telomerase
4.
Cancer Discov ; 10(7): 942-963, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32238360

RESUMO

Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890.


Assuntos
Fusão Gênica/genética , Glioma/genética , Humanos , Lactente , Gradação de Tumores , Prognóstico , Resultado do Tratamento
5.
World Neurosurg ; 116: 279-284, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29859355

RESUMO

BACKGROUND: Advances in molecular profiling have facilitated the emergence of newly defined entities of central nervous system (CNS) tumor, including CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Relatively little is known about the clinical behavior of these newly characterized tumors. CASE DESCRIPTION: We describe a pediatric male patient with CNS HGNET-BCOR, who developed seeding of the tumor into the site of the surgical wound within months of surgery and who underwent resection of a residual posterior fossa tumor. CONCLUSIONS: This case emphasizes 3 important points. First, CNS HGNET-BCOR can be aggressive tumors that necessitate close clinical and radiologic surveillance. Second, surveillance imaging in such cases should incorporate the surgical incision site into the field of view, and this should be closely scrutinized to ensure the timely detection of wound site seeding. Third, wound site seeding may still occur despite the use of meticulous surgical techniques.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias Neuroepiteliomatosas/diagnóstico por imagem , Neoplasias Neuroepiteliomatosas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Sistema Nervoso Central/complicações , Pré-Escolar , Progressão da Doença , Humanos , Hidrocefalia/etiologia , Antígeno Ki-67/metabolismo , Imageamento por Ressonância Magnética , Masculino , Neoplasias Neuroepiteliomatosas/complicações , Proteínas do Tecido Nervoso/metabolismo
6.
Sci Rep ; 8(1): 1032, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348602

RESUMO

Astroblastomas are rare brain tumours which predominate in children and young adults, and have a controversial claim as a distinct entity, with no established WHO grade. Reports suggest a better outcome than high grade gliomas, though they frequently recur. Recently, they have been described to overlap with a newly-discovered group of tumours described as'high grade neuroepithelial tumour with MN1 alteration' (CNS HGNET-MN1), defined by global methylation patterns and strongly associated with gene fusions targeting MN1. We have studied a unique case of astroblastoma arising in a 6 year-old girl, with multiple recurrences over a period of 10 years, with the pathognomonic MN1:BEND2 fusion. Exome sequencing allowed for a phylogenetic reconstruction of tumour evolution, which when integrated with clinical, pathological and radiological data provide for a detailed understanding of disease progression, with initial treatment driving tumour dissemination along four distinct trajectories. Infiltration of distant sites was associated with a later genome doubling, whilst there was evidence of convergent evolution of different lesions acquiring distinct alterations targeting NF-κB. These data represent an unusual opportunity to understand the evolutionary history of a highly recurrent childhood brain tumour, and provide novel therapeutic targets for astroblastoma/CNS HGNET-MN1.


Assuntos
Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas Supressoras de Tumor/genética , Fatores Etários , Criança , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Gradação de Tumores , Neoplasias Neuroepiteliomatosas/diagnóstico por imagem , Proteínas de Fusão Oncogênica/metabolismo , Recidiva , Transativadores , Translocação Genética , Proteínas Supressoras de Tumor/metabolismo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA