Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancer Metastasis Rev ; 43(2): 823-844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38238542

RESUMO

Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.


Assuntos
Neoplasias da Mama , Progressão da Doença , Microambiente Tumoral , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Mecanotransdução Celular , Metástase Neoplásica
2.
Mol Pharm ; 17(6): 2208-2220, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324415

RESUMO

Understanding cellular uptake mechanisms of nanoparticles with therapeutic potential has become critical in the field of drug delivery. Elucidation of cellular entry routes can aid in the dissection of the complex intracellular trafficking and potentially allow for the manipulation of nanoparticle fate after cellular delivery (i.e., avoid lysosomal degradation). Branched amphiphilic peptide capsules (BAPCs) are peptide nanoparticles that have been and are being explored as delivery systems for nucleic acids and other therapeutic molecules in vitro and in vivo. In the present study, we determined the cellular uptake routes of BAPCs with and without a magnetic nanobead core (BAPc-MNBs) in two cell lines: macrophages and intestinal epithelial cells. We also studied the influence of size and growth media composition in this cellular process. Substituting the water-filled core with magnetic nanobeads might provide the peptide bilayer nanocapsules with added functionalities, facilitating their use in bio/immunoassays, magnetic field guided drug delivery, and magnetofection among others. Results suggest that BAPc-MNBs are internalized into the cytosol using more than one endocytic pathway. Flow cytometry and analysis of reactive oxygen and nitrogen species (ROS/RNS) demonstrated that cell viability was minimally impacted by BAPc-MNBs. Cellular uptake pathways of peptide vesicles remain poorly understood, particularly with respect to endocytosis and intracellular trafficking. Outcomes from these studies provide a fundamental understanding of the cellular uptake of this peptide-based delivery system which will allow for strengthening of their delivery capabilities and expanding their applications both in vitro and in vivo.


Assuntos
Peptídeos/química , Endocitose/fisiologia , Citometria de Fluxo , Microscopia Confocal , Nanopartículas/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Anal Chem ; 89(11): 6153-6159, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28467848

RESUMO

Fluorescence is widely used for small-volume analysis and is a primary tool for on-chip detection in microfluidic devices, yet additional expertise, more elaborate optics, and phase-locked detectors are needed for ultrasensitive measurements. Recently, we designed a microfluidic analog to an optical beam chopper (µChopper) that alternated formation of picoliter volume sample and reference droplets. Without complex optics, the device negated large signal drifts (1/f noise), allowing absorbance detection in a mere 27 µm optical path. Here, we extend the µChopper concept to fluorescence detection with standard wide-field microscope optics. Precision of droplet control in the µChopper was improved by automation with pneumatic valves, allowing fluorescence measurements to be strictly phase locked at 0.04 Hz bandwidth to droplets generated at 3.50 Hz. A detection limit of 12 pM fluorescein was achieved when sampling 20 droplets, and as few as 310 zeptomoles (3.1 × 10-19 mol) were detectable in single droplets (8.8 nL). When applied to free fatty acid (FFA) uptake in 3T3-L1 adipocytes, this µChopper permitted single-cell FFA uptake rates to be quantified at 3.5 ± 0.2 × 10-15 mol cell-1 for the first time. Additionally, homogeneous immunoassays in droplets exhibited insulin detection limits of 9.3 nM or 190 amol (1.9 × 10-16 mol). The combination of this novel, automated µChopper with lock-in detection provides a high-performance platform for detecting small differences with standard fluorescence optics, particularly in situations where sample volume is limited. The technique should be simple to implement into a variety of other droplet fluidics devices.


Assuntos
Automação , Ácidos Graxos/análise , Fluorescência , Técnicas Analíticas Microfluídicas , Imagem Óptica , Células 3T3-L1 , Adipócitos/química , Adipócitos/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 33(28): 7096-7104, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28654272

RESUMO

Branched amphipathic peptide capsules (BAPCs) are biologically derived, bilayer delimited, nanovesicles capable of being coated by or encapsulating a wide variety of solutes. The vesicles and their cargos are readily taken up by cells and become localized in the perinuclear region of cells. When BAPCs are mixed with DNA, the BAPCs act as cationic nucleation centers around which DNA winds. The BAPCs-DNA nanoparticles are capable of delivering plasmid DNA in vivo and in vitro yielding high transfection rates and minimal cytotoxicity. BAPCs share several biophysical properties with lipid vesicles. They are however considerably more stable-resisting disruption in the presence of chaotropes such as urea and guanidinium chloride, anionic detergents, proteases, and elevated temperature (∼95 °C). To date, all of our published results have utilized BAPCs that are composed of equimolar concentrations of the two branched sequences (Ac-FLIVI)2-K-K4-CO-NH2 and (Ac-FLIVIGSII)2-K-K4-CO-NH2. The mixture of sizes was utilized to relieve potential curvature strain in the spherical capsule. In this article, different molar ratios of the two peptides were studied to test whether alternate ratios produced BAPCs with different biological and biophysical properties. Additionally, preparation (annealing) temperature was included as a second variable.


Assuntos
Peptídeos/química , Cápsulas , Cátions , DNA , Transfecção
5.
Arch Biochem Biophys ; 596: 22-42, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26926258

RESUMO

Various strategies are being developed to improve delivery and increase the biological half-lives of pharmacological agents. To address these issues, drug delivery technologies rely on different nano-sized molecules including: lipid vesicles, viral capsids and nano-particles. Peptides are a constituent of many of these nanomaterials and overcome some limitations associated with lipid-based or viral delivery systems, such as tune-ability, stability, specificity, inflammation, and antigenicity. This review focuses on the evolution of bio-based drug delivery nanomaterials that self-assemble forming vesicles/capsules. While lipid vesicles are preeminent among the structures; peptide-based constructs are emerging, in particular peptide bilayer delimited capsules. The novel biomaterial-Branched Amphiphilic Peptide Capsules (BAPCs) display many desirable properties. These nano-spheres are comprised of two branched peptides-bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK, designed to mimic diacyl-phosphoglycerides in molecular architecture. They undergo supramolecular self-assembly and form solvent-filled, bilayer delineated capsules with sizes ranging from 20 nm to 2 µm depending on annealing temperatures and time. They are able to encapsulate different fluorescent dyes, therapeutic drugs, radionuclides and even small proteins. While sharing many properties with lipid vesicles, the BAPCs are much more robust. They have been analyzed for stability, size, cellular uptake and localization, intra-cellular retention and, bio-distribution both in culture and in vivo.


Assuntos
Materiais Biomiméticos/química , Nanocápsulas/química , Peptídeos/química , Animais , Materiais Biomiméticos/uso terapêutico , Humanos , Nanocápsulas/uso terapêutico , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Peptídeos/uso terapêutico
6.
Biochim Biophys Acta ; 1838(9): 2296-305, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24565797

RESUMO

Branched amphiphilic peptide capsules (BAPCs) are peptide nano-spheres comprised of equimolar proportions of two branched peptide sequences bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK that self-assemble to form bilayer delimited capsules. In two recent publications we described the lipid analogous characteristics of our BAPCs, examined their initial assembly, mode of fusion, solute encapsulation, and resizing and delineated their capability to be maintained at a specific size by storing them at 4°C. In this report we describe the stability, size limitations of encapsulation, cellular localization, retention and, bio-distribution of the BAPCs in vivo. The ability of our constructs to retain alpha particle emitting radionuclides without any apparent leakage and their persistence in the peri-nuclear region of the cell for extended periods of time, coupled with their ease of preparation and potential tune-ability, makes them attractive as biocompatible carriers for targeted cancer therapy using particle emitting radioisotopes. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Peptídeos/química , Actínio/uso terapêutico , Cápsulas/química , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/uso terapêutico , Nanosferas/química , Nanosferas/uso terapêutico , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Peptídeos/uso terapêutico , Radioisótopos/uso terapêutico , Soluções
7.
Mol Pharm ; 12(3): 706-15, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25647162

RESUMO

Over the past decade, peptides have emerged as a new family of potential carriers in gene therapy. Peptides are easy to synthesize and quite stable. Additionally, sequences shared by the host proteome are not expected to be immunogenic or trigger inflammatory responses, which are commonly observed with viral approaches. We recently reported on a new class of branched amphiphilic peptide capsules (BAPCs) that self-assemble into extremely stable nanospheres. These capsules are capable of retaining and delivering alpha-emitting radionuclides to cells. Here we report that, in the presence of double stranded plasmid DNA, BAPCs are unable to form. Instead, depending of the peptide/DNA ratios, the peptides either coat the plasmid surface forming nanofibers (high peptide to DNA ratio) or condense the plasmid into nanometer-sized compacted structures (at low peptide to DNA ratios). Different gene delivery efficiencies are observed for the two types of assemblies. The compacted nanometer-sized structures display much higher transfection efficiencies in HeLa cells. This level of transfection is greater than that observed for a lipid-based reagent when the total number of viable transfected cells is taken into account.


Assuntos
DNA/química , DNA/genética , Oligopeptídeos/química , Fenômenos Biofísicos , Cátions/química , Sobrevivência Celular , Técnicas de Transferência de Genes , Terapia Genética , Células HeLa , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Nanofibras/química , Nanofibras/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Tensoativos/química , Transfecção
8.
Nanoscale Adv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39280791

RESUMO

Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.

9.
Front Immunol ; 15: 1302587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533507

RESUMO

The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Comunicação Celular , Evasão da Resposta Imune , Células Estromais
10.
Langmuir ; 29(47): 14648-54, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24188529

RESUMO

In a recent article (Gudlur et al. PLOS ONE, 2012, 7 (9) e45374), we described the special properties of a mixed branched peptide assembly in which equimolar bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK self-associate to form bilayer delimited capsules capable of trapping solutes. These polycationic vesicle-like capsules are readily taken up by epithelial cells in culture, escape or evade the endocytic pathway, and accumulate in the perinuclear region where they persist without any apparent degradation. In this report, we examine the lipidlike properties of this system including initial assembly; solute encapsulation and washing; fusion and resizing by membrane extrusion through polycarbonate filters with defined pore sizes. The resized peptide capsules have uniform diameters in nm size ranges. Once resized, the capsules can be maintained at the new size by storing them at 4 °C. Having the ability to prepare stable uniform nanoscale capsules of desired sizes makes them potentially attractive as biocompatible delivery vehicles for various solutes/drugs.


Assuntos
Bicamadas Lipídicas/química , Nanocápsulas/química , Oligopeptídeos/síntese química , Oligopeptídeos/química , Tamanho da Partícula , Propriedades de Superfície
11.
Front Insect Sci ; 3: 1151789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469482

RESUMO

Gene silencing by feeding double-stranded (dsRNA) holds promise as a novel pest management strategy. Nonetheless, degradation of dsRNA in the environment and within the insect gut, as well as inefficient systemic delivery are major limitations to applying this strategy. Branched amphiphilic peptide capsules (BAPCs) complexed with dsRNA have been used to successfully target genes outside and inside the gut epithelium upon ingestion. This suggests that BAPCs can protect dsRNA from degradation in the gut environment and successfully shuttle it across gut epithelium. In this study, our objectives were to 1) Determine whether feeding on BAPC-dsRNA complexes targeting a putative peritrophin gene of P. japonica would result in the suppression of gut peritrophin synthesis, and 2) gain insight into the cellular uptake mechanisms and transport of BAPC-dsRNA complexes across the larval midgut of P. japonica. Our results suggest that BAPC-dsRNA complexes are readily taken up by the midgut epithelium, and treatment of the tissue with endocytosis inhibitors effectively suppresses intracellular transport. Further, assessment of gene expression in BAPC- peritrophin dsRNA fed beetles demonstrated significant downregulation in mRNA levels relative to control and/or dsRNA alone. Our results demonstrated that BAPCs increase the efficacy of gene knockdown relative to dsRNA alone in P. japonica adults. To our knowledge, this is the first report on nanoparticle-mediated dsRNA delivery through feeding in P. japonica.

12.
ACS Omega ; 7(13): 10933-10943, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415340

RESUMO

Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs-dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.

13.
Biomater Sci ; 10(24): 6980-6991, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36254388

RESUMO

Nanoparticles (NPs) have been shown to be a suitable mRNA delivery platform by conferring protection against ribonucleases and facilitating cellular uptake. Several NPs have succeeded in delivering mRNA intranasally, intratracheally, and intramuscularly in preclinical settings. However, intravenous mRNA delivery has been less explored. Only a few NPs have been tested for systemic delivery of mRNA, many of which are formulated with polyethylene glycol (PEG). The incorporation of PEG presents some tradeoffs that must be carefully considered when designing a systemic delivery model. For example, while the addition of PEG may prolong circulation time by preventing early clearance by the mononuclear phagocytic system (MPS), it has also been reported that treating patients with PEGylated drugs can result in hypersensitivity reactions due to anti-PEG antibodies. Thus, it is desirable to have alternative PEG-free delivery methods for mRNA to avoid these adverse effects while preserving the beneficial effects. Our research group developed BAPCs (branched amphiphilic peptide capsules), a peptide-based nanoparticle that resists disruption by chaotropes, proteases, and elevated temperature, thus displaying significant stability and shelf-life. In this study, we demonstrated that similarly to PEG, mRNA shields the BAPC cationic surface to avoid early clearance by the MPS. Multispectral optoacoustic tomography (MSOT) and fluorescence reflectance imaging were imaging techniques used to analyze biodistribution within major MPS organs. Analysis of pro-inflammatory cytokine expression showed that BAPC-mRNA complexes do not cause chronic inflammation. Additionally, BAPCs enhance intracellular delivery of mRNA with negligible cytotoxicity or oxidative stress. These results might pave the way for future therapeutic applications of BAPCs as a delivery platform for systemic mRNA delivery.


Assuntos
Peptídeos , Humanos , RNA Mensageiro/genética , Distribuição Tecidual
14.
ACS Appl Bio Mater ; 3(9): 6167-6176, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021749

RESUMO

Fungal infections are becoming a global health problem. A major limiting factor for the development of antifungals is the high impermeability of the rigid and thick fungal cell wall. Compared to mammalian cells, fungal cells are more resilient to perforation due to the presence of this carbohydrate armor. While a few methods have been reported to penetrate the fungal cell wall, such as electroporation, biolistics, glass beads, and the use of monovalent cations, such methods are generally time-consuming, compromise cell viability, and often lead to low permeation rates. In addition, their use remains limited to in vitro applications due to the collateral damage that these techniques could cause to healthy living tissues. Presented in this study is a delivery approach based on the generation of transient breaks, or pores, in the cell wall. Breaks are generated by cavitation and shock waves resulting from the irradiation of gold nanoparticles with a femtosecond infrared laser. Such an approach enabled the delivery of membrane impermeable molecules (i.e., calcein and plasmid DNA) into Saccharomyces cerevisiae, a fungal model organism. This method is expected to exhibit high biocompatibility and holds potential for clinical applications for the treatment of fungal infections given that neither the laser irradiation nor the nanoparticles have been found to damage cells. Mechanistical aspects of photoporation, such as the proximity needed between the nanoparticle and the cell membrane for these processes to take place, are also discussed. Hence, the laser-assisted drug delivery approach described here is suitable for further preclinical evaluation in oral, vaginal, and skin mycoses where current treatments are insufficient due to host-related adverse reactions, poor fungal cell penetration, or risk of developing antifungal resistance.

15.
PLoS One ; 7(9): e45374, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028970

RESUMO

Peptide-based packaging systems show great potential as safer drug delivery systems. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. Here, we describe a set of 15 & 23-residue branched, amphiphilic peptides that mimic phosphoglycerides in molecular architecture. These peptides undergo supramolecular self-assembly and form solvent-filled, bilayer delimited spheres with 50-200 nm diameters as confirmed by TEM, STEM and DLS. Whereas weak hydrophobic forces drive and sustain lipid bilayer assemblies, these all-peptide structures are stabilized potentially by both hydrophobic interactions and hydrogen bonds and remain intact at low micromolar concentrations and higher temperatures. A linear peptide lacking the branch point showed no self-assembly properties. We have observed that these peptide vesicles can trap fluorescent dye molecules within their interior and are taken up by N/N 1003A rabbit lens epithelial cells grown in culture. These assemblies are thus potential drug delivery systems that can overcome some of the key limitations of the current packaging systems.


Assuntos
Nanoestruturas/química , Peptídeos/química , Animais , Células Cultivadas , Glicerofosfolipídeos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA