Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110847

RESUMO

Klebsiella is a common dangerous pathogen for humans and animals and is widely present in the digestive system. The genus Klebsiella is ubiquitous, as it is endemic to surface water, soil, and sewage. In this study, 70 samples were obtained from soil-dwelling invertebrates from September 2021 to March 2022 from Taif and Shafa in different altitudinal regions of Saudi Arabia. Fifteen of these samples were identified as Klebsiella spp. The Klebsiella isolates were genetically identified as Klebsiella pneumoniae using rDNA sequencing. The antimicrobial susceptibility of the Klebsiella isolates was determined. Amplification of virulence genes was performed using PCR. In this study, 16S rDNA sequencing showed a similarity from 98% to 100% with related K. pneumonia from the NCBI database, and the sequences were deposited in the NCBI GenBank under accession numbers ON077036 to ON077050. The growth inhibition properties of ethanolic and methanolic extracts of the medicinal plant Rhazya stricta's leaves against K. pneumoniae strains using the minimum inhibitory concentration (MIC) method and disc diffusion were evaluated. In addition, the biofilm inhibitory potential of these extracts was investigated using crystal violet. HPLC analysis identified 19 components divided into 6 flavonoids, 11 phenolic acids, stilbene (resveratrol), and quinol, and revealed variations in the number of components and their quantities between extracts. Both extracts demonstrated interesting antibacterial properties against K. pneumoniae isolates. The 2 extracts also showed strong biofilm inhibitory activities, with percentages of inhibition extending from 81.5% to 98.7% and from 35.1% to 85.8% for the ethanolic and methanolic extracts, respectively. Rhazya stricta leaf extract revealed powerful antibacterial and antibiofilm activities against K. pneumoniae isolates and could be a good candidate for the treatment or prevention of K. pneumonia-related infections.


Assuntos
Apocynaceae , Klebsiella pneumoniae , Humanos , Altitude , Extratos Vegetais/química , Antibacterianos/química , Klebsiella , DNA Ribossômico , Testes de Sensibilidade Microbiana
2.
Mol Divers ; 26(5): 2813-2823, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220547

RESUMO

Eco-friendly, low-cost and high-yielding synthetic route toward imidazoles and oxazoles has been developed. 1-(4,6-Dimethylpyrimidin-2-yl)-2-(alkylamino)-1,5-dihydro-4H-imidazol-4-one 3a-c have been synthesized via regiospecific reaction of ethyl 2-(N-(4,6-dimethylpyrimidin-2-yl)cyanamide)acetate 1 with primary aliphatic amines in water as green solvent. While, the reaction between 4,6-dimethylpyrimidin-2-yl(2-oxo-2-phenylethyl)cyanamide 2 and primary aliphatic amines using water and/or iso-propanol as green solvents afforded 3-(4,6-dimethylpyrimidin-2-yl)-5-phenyl-1,3-oxazole-2(3H)-imine 6 and 1-(4,6-dimethylpyrimidin-2-yl)-N-alkyl-4-phenyl-1H-imidazol-2-amine 7a-d, respectively.


Assuntos
Cianamida , Imidazóis , Aminas , Ciclização , Oxazóis , Propanóis , Solventes , Água
3.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744888

RESUMO

Endophytic fungi including black aspergilli have the potential to synthesize multiple bioactive secondary metabolites. Therefore, the search for active metabolites from endophytic fungi against pathogenic microbes has become a necessity for alternative and promising strategies. In this study, 25 endophytic fungal isolates associated with Malus domestica were isolated, grown, and fermented on a solid rice medium. Subsequently, their ethyl acetate crude extracts were pretested for biological activity. One endophytic fungal isolate demonstrated the highest activity and was chosen for further investigation. Based on its phenotypic, ITS ribosomal gene sequences, and phylogenetic characterization, this isolate was identified as Aspergillus tubingensis strain AN103 with the accession number (KR184138). Chemical investigations of its fermented cultures yielded four compounds: Pyranonigrin A (1), Fonsecin (2), TMC 256 A1 (3), and Asperazine (4). Furthermore, 1H-NMR, HPLC, and LC-MS were performed for the identification and structure elucidation of these metabolites. The isolated pure compounds showed moderate-to-potent antibacterial activities against Pseudomonas aeruginosa and Escherichia coli (MIC value ranged from 31 and 121 to 14.5 and 58.3 µg/mL), respectively; in addition, the time−kill kinetics for the highly sensitive bacteria against isolated compounds was also investigated. The antifungal activity results show that (3) and (4) had the maximum effect against Fusarium solani and A. niger with inhibition zones of 16.40 ± 0.55 and 16.20 ± 0.20 mm, respectively, and (2) had the best effect against Candida albicans, with an inhibition zone of 17.8 ± 1.35 mm. Moreover, in a cytotoxicity assay against mouse lymphoma cell line L5178Y, (4) exhibited moderate cytotoxicity (49% inhibition), whereas (1−3) reported weak cytotoxicity (15, 26, and 19% inhibition), respectively. Our results reveal that these compounds might be useful to develop potential cytotoxic and antimicrobial drugs and an alternative source for various medical and pharmaceutical fields.


Assuntos
Malus , Animais , Antifúngicos/farmacologia , Aspergillus/metabolismo , Camundongos , Filogenia
4.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296520

RESUMO

Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.


Assuntos
Inibidores de Glicosídeo Hidrolases , Tiossemicarbazonas , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Acarbose , Tiossemicarbazonas/farmacologia , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Benzimidazóis/química , Estrutura Molecular
5.
Int Microbiol ; 24(2): 169-181, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33389217

RESUMO

L-Glutaminase is an amidohydrolase which can act as a vital chemotherapeutic agent against various malignancies. In the present work, L-glutaminase productivity from Aspergillus versicolor Faesay4 was significantly increased by 7.72-fold (from 12.33 ± 0.47 to 95.15 ± 0.89 U/mL) by optimizing submerged fermentation parameters in Czapek's Dox (CZD) medium including an incubation period from 3 (12.33 ± 0.47 U/mL) to 6 days (23.36 ± 0.58 U/mL), an incubation temperature from 30 °C (23.36 ± 0.49 U/mL) to 25 °C (31.08 ± 0.60 U/mL), initial pH from pH 5.0 (8.49 ± 0.21 U/mL)  to pH 7.0 (32.18 ± 0.57 U/mL), replacement of glucose (30.19 ± 0.52 U/mL) by sucrose (48.97 ± 0.67 U/mL) as the carbon source at a concentration of 2.0% (w/v), increasing glutamine concentration as the nitrogen source from 1.0% (w/v, 48.54 ± 0.48 U/mL) to 1.5% (w/v, 63.01 ± 0.60 U/mL), and addition of a mixture of KH2PO4 and NaCl (0.5% w/v for both) to SZD as the metal supplementation (95.15 ± 0.89 U/mL). Faesay4 L-glutaminase was purified to yield total activity 13,160 ± 22.76 (U), specific activity 398.79 ± 9.81 (U/mg of protein), and purification fold 2.1 ± 3.18 with final enzyme recovery 57.22 ± 2.17%. The pure enzyme showed a molecular weight of 61.80 kDa, and it was stable and retained 100.0% of its activity at a temperature ranged from 10 to 40 °C and pH 7.0. In our trials, to increase the enzyme activity by optimizing the assay conditions (which were temperature 60 °C, pH 7.0, substrate glutamine, substrate concentration 1.0%, and reaction time 60 min), the enzyme activity increased by 358.8% after changing the assay temperature from 60 to 30 °C and then increased by 138% after decreasing the reaction time from 60 to 40 min. However, both pH 7.0 and glutamine as the substrate remain the best assay parameters for the L-glutaminase activity. When the glutamine in the assay as the reaction substrate was replaced by asparagine, lysine, proline, methionine, cysteine, glycine, valine, phenylalanine, L-alanine, aspartic acid, tyrosine, and serine, the enzyme lost 23.86%, 29.0%, 31.0%, 48.3%, 50.0%, 73.6%, 74.51%, 80.42%, 82.5%, 83.43%, 88.36%, and 89.78% of its activity with glutamine, respectively. Furthermore, Mn2+, K+, Na+, and Fe3+ were enzymatic activators that increased the L-glutaminase activity by 25.0%, 18.05%, 10.97%, and 8.0%, respectively. Faesay4 L-glutaminase was characterized as a serine protease enzyme as a result of complete inhibition by all serine protease inhibitors (PMSF, benzamidine, and TLCK). Purified L-glutaminase isolated from Aspergillus versicolor Faesay4 showed potent DPPH scavenging activities with IC50 = 50 µg/mL and anticancer activities against human liver (HepG-2), colon (HCT-116), breast (MCF-7), lung (A-549), and cervical (Hela) cancer cell lines with IC50 39.61, 12.8, 6.18, 11.48, and 7.25 µg/mL, respectively.


Assuntos
Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Aspergillus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Glutaminase/química , Glutaminase/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Aspergillus/química , Aspergillus/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estabilidade Enzimática , Proteínas Fúngicas/farmacologia , Glutaminase/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Especificidade por Substrato
6.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065835

RESUMO

The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7-40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL-1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5-15.5 ppm for I-IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.


Assuntos
Anopheles/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Inseticidas/farmacologia , Óxido de Magnésio/farmacologia , Penicillium chrysogenum/crescimento & desenvolvimento , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Química Verde , Inseticidas/química , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Óxido de Magnésio/química , Óxido de Magnésio/isolamento & purificação , Metabolômica , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Penicillium chrysogenum/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pupa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
7.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361776

RESUMO

In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Antivirais/química , Proteínas Fúngicas/química , Pleurotus/química , Proteoma/química , Cogumelos Shiitake/química , Aminoácidos/química , Aminoácidos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Misturas Complexas/química , Flavonoides/química , Flavonoides/isolamento & purificação , Proteínas Fúngicas/classificação , Proteínas Fúngicas/isolamento & purificação , Humanos , Lectinas/química , Lectinas/isolamento & purificação , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Especificidade de Órgãos , Fenóis/química , Fenóis/isolamento & purificação , Picratos/antagonistas & inibidores , Pleurotus/metabolismo , Cultura Primária de Células , Proteoma/classificação , Proteoma/isolamento & purificação , Serina Proteases/química , Serina Proteases/isolamento & purificação , Cogumelos Shiitake/metabolismo , Ácidos Sulfônicos/antagonistas & inibidores , Superóxido Dismutase/química , Superóxido Dismutase/isolamento & purificação , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/isolamento & purificação , Vitaminas/química , Vitaminas/isolamento & purificação , Água/química
8.
Plants (Basel) ; 11(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35050098

RESUMO

Salinity is one of the harsh environmental stresses that destructively impact potato growth and production, particularly in arid regions. Exogenously applied safe-efficient materials is a vital approach for ameliorating plant growth, productivity, and quality under salinity stress. This study aimed at investigating the impact of foliar spray using folic acid (FA), ascorbic acid (AA), and salicylic acid (SA) at different concentrations (100, 150, or 200 mg/L) on plant growth, physiochemical ingredients, antioxidant defense system, tuber yield, and quality of potato (Solanum tuberosum L cv. Spunta) grown in salt-affected soil (EC = 7.14 dS/m) during two growing seasons. The exogenously applied antioxidant materials (FA, AA, and SA) significantly enhanced growth attributes (plant height, shoot fresh and dry weight, and leaves area), photosynthetic pigments (chlorophyll a and b and carotenoids), gas exchange (net photosynthetic rate, Pn; transpiration rate, Tr; and stomatal conductance, gs), nutrient content (N, P, and K), K+/ Na+ ratio, nonenzymatic antioxidant compounds (proline and soluble sugar content), enzymatic antioxidants (catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX)) tuber yield traits, and tuber quality (dry matter, protein, starch percentage, total carbohydrates, and sugars percentage) compared with untreated plants in both seasons. Otherwise, exogenous application significantly decreased Na+ and Cl- compared to the untreated control under salt stress conditions. Among the assessed treatments, the applied foliar of AA at a rate of 200 mg/L was more effective in promoting salt tolerance, which can be employed in reducing the losses caused by salinity stress in potato grown in salt-affected soils.

9.
Front Nutr ; 9: 876817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592629

RESUMO

In this study, 18 standard amino acids were tested as a single nitrogen source on biomass, total lipid, total fatty acid (TFA) production, and yield of γ-linolenic acid (GLA) in Rhizomucor pusillus AUMC 11616.A and Mucor circinelloides AUMC 6696.A isolated from unusual habitats. Grown for 4 days at 28°C, shaking at 150 rpm, the maximum fungal biomass for AUMC 6696.A was 14.6 ± 0.2 g/L with arginine and 13.68 ± 0.1 g/L with asparagine, when these amino acids were used as single nitrogen sources, while AUMC 11616.A maximum biomass was 10.73 ± 0.8 g/L with glycine and 9.44 ± 0.6 g/L with valine. These were significantly higher than the ammonium nitrate control (p < 0.05). The highest levels of TFA were achieved with glycine for AUMC 11616.A, 26.2 ± 0.8% w/w of cell dry weight, and glutamic acid for AUMC 6696.A, 23.1 ± 1.3%. The highest GLA yield was seen with proline for AUMC 11616.A, 13.4 ± 0.6% w/w of TFA, and tryptophan for AUMC 6696.A, 12.8 ± 0.3%, which were 38% and 25% higher than the ammonium tartrate control. The effects of environmental factors such as temperature, pH, fermentation time, and agitation speed on biomass, total lipids, TFA, and GLA concentration of the target strains have also been investigated. Our results demonstrated that nitrogen assimilation through amino acid metabolism, as well as the use of glucose as a carbon source and abiotic factors, are integral to increasing the oleaginicity of tested strains. Few studies have addressed the role of amino acids in fermentation media, and this study sheds light on R. pusillus and M. circinelloides as promising candidates for the potential applications of amino acids as nitrogen sources in the production of lipids.

10.
Saudi J Biol Sci ; 29(5): 3675-3686, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844395

RESUMO

Salinity is widespread environmental stress that poses great obstacles to rapeseed development and growth. Polyamines are key plant growth regulators that play a pivotal role in regulating salt tolerance. Rapeseed (Brassica napus L.) seedlings were treated by spermine (Spm) and spermidine (Spd) versus untreated control under salt stress conditions. It was detected that the Spd-treated plants had significantly elevated chlorophyll and proline content and maintained higher photosystem II (PSII) activity than those treated with Spm as well as untreated control under salt-stressed conditions. Similarly, Spd alleviated the devastating effects of NaCl stress on CO2 assimilation and significantly elevated Rubisco activity (ribulose 1,5-bisphosphate carboxylase/oxygenase). The application of Spd also enhanced the activities of different antioxidant enzymes under NaCl stress. It modulated their respective transcription levels, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and dehydroascorbate reductase (DHAR). In addition, exogenously sprayed Spd enhanced the polyamine pathway as observed by upregulated transcription of polyamine oxidase (PAO) and diamine oxidase (DAO). The Spd application enhanced expressions of Calvin cycle enzyme related genes such as Rubisco small subunit, Rubisco large subunit, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglyceric acid kinase (PGK), triose-3-phosphate isomerase (TPI), fructose-1,6-bisphosphate aldolase (FBA), sedoheptulose-1,7-bisphosphatase (SBPase), and fructose-1,6-bisphosphate phosphatase (FBPase). Consequently, this study demonstrates that exogenous application of Spd has a valuable role in regulating antioxidant enzyme activity, polyamine pathway, and Calvin cycle enzyme-related genes to alleviate salt stress damage in the plants.

11.
Sci Rep ; 12(1): 13111, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908106

RESUMO

This study aimed to improve lipid and gamma-linolenic acid (GLA) production of an oleaginous fungus, Mucor plumbeus, through coculturing with Bacillus subtilis bacteria, optimising the environmental and nutritional culture conditions, and scaling them for batch fermentation. The maximum levels of biomass, lipid, fatty acid, and GLA in a 5 L bioreactor containing cellobiose and ammonium sulfate as the optimal carbon and nitrogen sources, respectively, achieved during the coculturing processes were 14.5 ± 0.4 g/L, 41.5 ± 1.3, 24 ± 0.8, and 20 ± 0.5%, respectively. This strategy uses cellobiose in place of glucose, decreasing production costs. The nutritional and abiotic factor results suggest that the highest production efficiency is achieved at 6.5 pH, 30 °C temperature, 10% (v/v) inoculum composition, 200 rpm agitation speed, and a 5-day incubation period. Interestingly, the GLA concentration of cocultures (20.0 ± 0.5%) was twofold higher than that of monocultures (8.27 ± 0.11%). More importantly, the GC chromatograms of cocultures indicated the presence of one additional peak corresponding to decanoic acid (5.32 ± 0.20%) that is absent in monocultures, indicating activation of silent gene clusters via cocultivation with bacteria. This study is the first to show that coculturing of Mucor plumbeus with Bacillus subtilis is a promising strategy with industrialisation potential for the production of GLA-rich microbial lipids and prospective biosynthesis of new products.


Assuntos
Bacillus , Ácido gama-Linolênico , Bacillus subtilis , Celobiose , Técnicas de Cocultura , Fermentação , Mucor , Estudos Prospectivos
12.
Front Bioeng Biotechnol ; 10: 930161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928959

RESUMO

Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis. Finally, in silico docking determined their binding affinities to target myeloperoxidase enzymes. Ten dominant mycoendophytes were isolated from different black seed plants. Three isolates were then selected based on high antiradical potency and further identified by ITS ribosomal gene sequencing. Those isolated were Aspergillus niger TU 62, Chaetomium madrasense AUMC14830, and Rhizopus oryzae AUMC14823. Nigella sativa seeds and their corresponding endophyte A. niger had the highest content of phenolics in their n-butanol extracts (28.50 and 24.43 mg/g), flavonoids (15.02 and 11.45 mg/g), and antioxidant activities (90.48 and 81.48%), respectively, followed by Dodonaea viscosa and Portulaca oleracea along with their mycoendophytic R. oryzae and C. madrasense. Significant positive correlations were found between total phenolics, flavonoids, and the antioxidant activities of different tested extracts. The n-butanol extracts of both black seeds and their derived mycoendophytes showed reasonable IC50 values (0.81-1.44 mg/ml) compared to the control with significant correlations among their phytochemical contents. Overall, seventeen standard phenolics and flavonoids were used, and the compounds were detected in different degrees of existence and concentration in the examined extracts through HPLC analysis. Moreover, the investigation of the molecular simulation results of detected compounds against the myeloperoxidase enzyme revealed that, as a targeted antioxidant, rutin possessed a high affinity (-15.3184 kcal/mol) as an inhibitor. Taken together, the black seeds and their derived mycoendophytes are promising bio-prospects for the broad industrial sector of antioxidants with several valuable potential pharmaceutical and nutritional applications.

13.
Front Vet Sci ; 9: 952319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187819

RESUMO

Caseins determine the physicochemical, physiological, and biological characteristics of milk. Four caseins-alpha-S-1, alpha-S-2, beta, and kappa-were analyzed phylogenetically and in silico and characterized regarding chemical, antimicrobial, and antioxidant features in five dairy animals: Arabian camels, sheep, goats, cattle, and water buffalos. The sequence of full-length amino acids of the four caseins for the five species was retracted from the NCBI GenBank database. Multiple sequence alignment is used to examine further the candidate sequences for phylogenetic analysis using Clustal X and NJ-Plot tools. The results revealed that sheep and goats possess strong similarities (98.06%) because of their common ancestor. The same was observed with cattle and water buffalos (96.25%). The Arabian camel was located in a single subclade due to low similarity in casein residues and compositions with other dairy animals. Protein modeling showed that alpha-S1- and alpha-S2-caseins possess the highest number of phosphoserine residues. The in silico computed chemical properties showed that ß-casein recorded highest hydrophobicity index and lowest basic amino acid content, while α-S2-casein showed the opposite. The computed biological parameters revealed that α-S2-casein presented the highest bactericidal stretches. Only Arabian camel ß-casein and k-casein showed one bactericidal stretches. The analysis also revealed that ß-casein, particularly in Arabian camels, possesses the highest antioxidant activity index. These results support the importance of the bioinformatics resources to determine milk casein micelles' chemical and biological activities.

14.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365394

RESUMO

Chamomile (Matricariarecutita L.) is one of the most important medicinal plants with various applications. The flowers and flower heads are the main organs inthe production of essential oil. The essential improvement goals of chamomile are considered to be high flower yield and oil content, as well asthe suitability for mechanical harvesting. The present study aimed to improve the flower yield, oil content and mechanical harvestability of German chamomile via chemical and physical mutagens. Three German chamomile populations (Fayum, Benysuif and Menia) were irradiated with 100, 200, 300 and 400 Gray doses of gamma rays, as well as chemically mutagenized using 0.001, 0.002 and 0.003 mol/mL of sodium azide for 4 h. The two mutagens produced a wide range of changes in the flowers' shape and size. At M3 generation, 18 mutants (11 from gamma irradiation and 7 from sodium azide mutagenization) were selected and morphologically characterized. Five out of eighteen mutants were selected for morphological and chemical characterization for oil content, oil composition and oil quality in M4 generation. Two promising mutants, F/LF5-2-1 and B/HNOF 8-4-2, were selected based on their performance in most studied traits during three generations, as well as the high percentage of cut efficiency and a homogenous flower horizon, which qualify them as suitable candidates for mechanical harvesting. The two mutants are late flowering elite mutants; the F/LF5-2-1 mutant possessed the highest oil content (1.77%) and number of flowers/plant (1595), while the second promising B/HNOF 8-4-2 mutant hada high oil content (1.29%) and chamazulene percentage (13.98%) compared to control plants. These results suggest that the B/HNOF 8-4-2 and F/LF5-2-1 mutants could be integrated as potential parents into breeding programs for a high number of flowers, high oil content, oil composition and oil color traits for German chamomile improvement.

15.
Plants (Basel) ; 11(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807674

RESUMO

Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants.

16.
Can J Microbiol ; 57(8): 693-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21823978

RESUMO

The objective of this study was to evaluate the occurrence of fungi in aerobic and anoxic activated sludge from membrane bioreactors. Thirty-six samples from each aerobic and anoxic activated sludge were taken from two membrane bioreactors treating domestic wastewater. Over a period of 9 months, four samples from each plant were taken per month. The samples were prepared for count and identification of fungi. Sixty species belonging to 30 genera were collected from activated sludge samples under aerobic and anoxic conditions. In terms of fungal identification, under aerobic conditions Geotrichum candidum was found at 94.4% followed by Penicillium species at 80.6%, yeasts at 75.0%, and Trichoderma species at 50.0%; under anoxic conditions G. candidum at 86.1%, yeasts at 66.6%, and Penicillium species at 61.1% were the most prevalent. The results indicate that activated sludge is a habitat for growth and sporulation of different groups of fungi, both saprophytic and pathogenic.


Assuntos
Biodiversidade , Reatores Biológicos/microbiologia , Fungos Mitospóricos/crescimento & desenvolvimento , Esgotos/microbiologia , Aerobiose , Anaerobiose , Berlim , Eliminação de Resíduos Líquidos/métodos
17.
Mycoses ; 54(5): e493-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21554420

RESUMO

The objective of this research was to conduct a survey of fungi in activated sludge plants with membrane bioreactors (MBRs). Thirty-six samples of both aerobic and anoxic activated sludge were taken from two plants with MBRs treating domestic wastewater. Over a period of 8 months, two samples from each plant were taken per month. The samples were prepared for count and identification of fungi. The obtained data show that 61 species belonging to 30 genera were identified from activated sludge samples, under aerobic conditions (27 genera and 54 species) and anoxic conditions (21 genera and 39 species), by culturing at 30 °C for 15 days. In aerobic activated sludge samples, the prevalence of Geotrichum candidum was 100% followed by Fusarium (72.2%), yeast (61.1%), Aspergillus (50.0%), Penicillium (50.0%) and Trichoderma (41.6%), while in anoxic activated sludge, G. candidum (94.4%), Fusarium (91.6%), Aspergillus (77.7%), yeast (63.8%), Penicillium (50.0%) and Trichoderma (50.0%) species were the most prevalent. In addition, the other genera found included Chaetomum, Chrysosporium, Cladosporium, Doratomyces, Gibberella, Gliocladium, Gymnoascus, Mucor, Paecilomyces, Phialophora, Rhizopus, Scopulariopsis, Stachybotrys, Stemphylium and others. The results indicate that aerobic and anoxic activated sludge provides a suitable habitat for the growth and sporulation of different groups of fungi, both saprophytic and pathogenic.


Assuntos
Biodiversidade , Reatores Biológicos/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Esgotos/microbiologia , Contagem de Colônia Microbiana , Humanos , Purificação da Água
18.
Biology (Basel) ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802973

RESUMO

Herein, CuO-NPs were fabricated by harnessing metabolites of Aspergillus niger strain (G3-1) and characterized using UV-vis spectroscopy, XRD, TEM, SEM-EDX, FT-IR, and XPS. Spherical, crystallographic CuO-NPs were synthesized in sizes ranging from 14.0 to 47.4 nm, as indicated by TEM and XRD. EDX and XPS confirmed the presence of Cu and O with weight percentages of 62.96% and 22.93%, respectively, at varied bending energies. FT-IR spectra identified functional groups of metabolites that could act as reducing, capping, and stabilizing agents to the CuO-NPs. The insecticidal activity of CuO-NPs against wheat grain insects Sitophilus granarius and Rhyzopertha dominica was dose- and time-dependent. The mortality percentages due to NP treatment were 55-94.4% (S. granarius) and 70-90% (R. dominica). A botanical experiment was done in a randomized block design. Low CuO-NP concentration (50 ppm) caused significant increases in growth characteristics (shoot and root length, fresh and dry weight of shoot and root, and leaves number), photosynthetic pigments (total chlorophylls and carotenoids), and antioxidant enzymes of wheat plants. There was no significant change in carbohydrate or protein content. The use of CuO-NPs is a promising tool to control grain insects and enhance wheat growth performance.

19.
Biochem Biophys Rep ; 27: 101079, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34355069

RESUMO

BACKGROUND AND AIM: Gastric Cancer (GC) is a leading cause of morbidity and mortality worldwide, particularly in developing nations, only a few suitable gastric cancer serum biomarkers with acceptable sensitivity and specificity exist. This work aims to highlight and uncover miR-30a-5p and miR-182-5p's diagnostic roles regarding gastric cancer and their roles in predicting prognosis. METHODS: 148 patients participated in this study. Groups I, II, and III had 47 patients with GC, 54 patients with benign gastric lesions, and 47 apparently healthy subjects of coincided age and gender as controls, respectively. All participants were clinically evaluated and subjected to CBC, serum CEA, and CA19-9 by ELISA, and real-time PCR tests of miR-30a-5p and miR-182-5p. RESULTS: MiR30a-5p and miR-182-5p were down regulated in gastric cancer patients in Group I more than Groups II and III (P < 0.001). ROC curve analysis revealed that miR30a-5p had better AUC, sensitivity, and specificity (0.961%, 93.62%, and 90.74%respectively). When miR-182-5p was gathered with CEA and CA19-9, specificity raised to 98.15% and PPV to 97.6%. Lower miR-30a-5p levels are linked with the presence of distant metastases, advanced TNM stage, and degree of pathological differentiation of tumors in GC patients (p = 0.034, 0.019, 0.049) respectively. According to the multivariate analysis, miR30a-5p expression level could be an independent predictor of GC. CONCLUSION: Our results exhibited that miRNAs, miR-30a-5p and miR182-5p, gene expression have a diagnostic power and can identify patients with GC. MiR-30a-5p displayed the highest diagnostic specificity and sensitivity. Besides other known tumor markers, they could offer simple noninvasive biomarkers that predict gastric cancer.

20.
J Fungi (Basel) ; 7(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803129

RESUMO

Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λmax) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA