Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 49(12): 1544-1551, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758873

RESUMO

Of the 572 neuroscience-related studies published in Nigerian from 1996 to 2017, <5% used state-of-the-art techniques, none used transgenic models, and only one study was published in a top-tier journal.


Assuntos
Bibliometria , Neurociências , Comunicação Acadêmica/tendências , Animais , Humanos , Neurociências/métodos , Nigéria , Publicações Periódicas como Assunto/tendências , Plantas Medicinais
2.
Cell Rep ; 43(7): 114357, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38955182

RESUMO

Cell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca2+, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear. Here, we show that ER membrane-localized reticulon 4 (RTN4/Nogo) is sufficient to impose neurite outgrowth inhibition in human cortical neurons while acting as an ER morphoregulator. Improving ER transport visualization methodologies combined with optogenetic Ca2+ dynamics imaging and in silico modeling, we observed that ER luminal transport is modulated by ER tubule narrowing and dilation, proportional to the amount of RTN4. Excess RTN4 limited ER luminal transport and Ca2+ release, while RTN4 elimination reversed the effects. The described morphoregulatory effect of RTN4 defines the capacity of the ER for peripheral Ca2+ delivery for physiological releases and thus may constitute a mechanism for controlling the (re)generation of neurites.


Assuntos
Cálcio , Retículo Endoplasmático , Neurônios , Proteínas Nogo , Retículo Endoplasmático/metabolismo , Proteínas Nogo/metabolismo , Humanos , Cálcio/metabolismo , Neurônios/metabolismo , Neuritos/metabolismo , Transporte Biológico , Crescimento Neuronal/efeitos dos fármacos
3.
J Adv Res ; 54: 59-76, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36736695

RESUMO

INTRODUCTION: Mitochondria are maternally inherited cell organelles with their own genome, and perform various functions in eukaryotic cells such as energy production and cellular homeostasis. Due to their inheritance and manifold biological roles in health and disease, mitochondrial genetics serves a dual purpose of tracing the history as well as disease susceptibility of human populations across the globe. This work requires a comprehensive catalogue of commonly observed genetic variations in the mitochondrial DNAs for all regions throughout the world. So far, however, certain regions, such as North and East Africa have been understudied. OBJECTIVES: To address this shortcoming, we have created the most comprehensive quality-controlled North and East African mitochondrial data set to date and use it for characterizing mitochondrial genetic variation in this region. METHODS: We compiled 11 published cohorts with novel data for mitochondrial genomes from 159 Sudanese individuals. We combined these 641 mitochondrial sequences with sequences from the 1000 Genomes (n = 2504) and the Human Genome Diversity Project (n = 828) and used the tool haplocheck for extensive quality control and detection of in-sample contamination, as well as Nanopore long read sequencing for haplogroup validation of 18 samples. RESULTS: Using a subset of high-coverage mitochondrial sequences, we predict 15 potentially novel haplogroups in North and East African subjects and observe likely phylogenetic deviations from the established PhyloTree reference for haplogroups L0a1 and L2a1. CONCLUSION: Our findings demonstrate common hitherto unexplored variants in mitochondrial genomes of North and East Africa that lead to novel phylogenetic relationships between haplogroups present in these regions. These observations call for further in-depth population genetic studies in that region to enable the prospective use of mitochondrial genetic variation for precision medicine.


Assuntos
DNA Mitocondrial , População da África Oriental , População do Norte da África , Humanos , DNA Mitocondrial/genética , População da África Oriental/genética , Variação Genética/genética , Haplótipos , Filogenia , Medicina de Precisão , Análise de Sequência de DNA , População do Norte da África/genética
4.
Nat Commun ; 13(1): 2501, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523806

RESUMO

Protein synthesis is supported by cellular machineries that ensure polypeptides fold to their native conformation, whilst eliminating misfolded, aggregation prone species. Protein aggregation underlies pathologies including neurodegeneration. Aggregates' formation is antagonised by molecular chaperones, with cytoplasmic machinery resolving insoluble protein aggregates. However, it is unknown whether an analogous disaggregation system exists in the Endoplasmic Reticulum (ER) where ~30% of the proteome is synthesised. Here we show that the ER of a variety of mammalian cell types, including neurons, is endowed with the capability to resolve protein aggregates under stress. Utilising a purpose-developed protein aggregation probing system with a sub-organellar resolution, we observe steady-state aggregate accumulation in the ER. Pharmacological induction of ER stress does not augment aggregates, but rather stimulate their clearance within hours. We show that this dissagregation activity is catalysed by the stress-responsive ER molecular chaperone - BiP. This work reveals a hitherto unknow, non-redundant strand of the proteostasis-restorative ER stress response.


Assuntos
Retículo Endoplasmático , Agregados Proteicos , Animais , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA