Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(5): 110938, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293535

RESUMO

Thyroperoxidase (TPO) is central in thyroid hormone (TH) synthesis and inhibition can lead to TH deficiency. Many chemicals can inhibit TPO activity in vitro, but how this may manifest in the developing thyroid gland at the molecular level is unclear. Here, we characterized the thyroid gland transcriptome of male rats developmentally exposed to the in vitro TPO-inhibitors amitrole, 2-mercaptobenzimidazole (MBI), or cyanamide by use of Bulk-RNA-Barcoding (BRB) and sequencing. Amitrole exposure caused TH deficiency and 149 differentially expressed genes in the thyroid gland. The effects indicated an activated and growing thyroid gland. MBI caused intermittent changes to serum TH concentrations in a previous study and this was accompanied by 60 differentially expressed genes in the present study. More than half of these were also affected by amitrole, indicating that they could be early effect biomarkers of developmental TH system disruption due to TPO inhibition. Further work to validate the signature is needed, including assessment of substance independency and applicability domain.

2.
Regul Toxicol Pharmacol ; 142: 105445, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414127

RESUMO

In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.


Assuntos
Hipotireoidismo , Heterotopia Nodular Periventricular , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Ratos , Camundongos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna , Hormônios Tireóideos/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/metabolismo , Propiltiouracila/toxicidade
3.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354186

RESUMO

The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.


Assuntos
Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Hormônios Tireóideos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Descoberta de Drogas , Disruptores Endócrinos/química , Humanos , Técnicas In Vitro , Internet
4.
Arch Toxicol ; 93(2): 253-272, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30430187

RESUMO

Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.


Assuntos
Canal Anal/anatomia & histologia , Genitália Masculina/anatomia & histologia , Efeitos Tardios da Exposição Pré-Natal , Antagonistas de Androgênios/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Masculino , Gravidez , Roedores , Diferenciação Sexual/efeitos dos fármacos , Testosterona/fisiologia , Testes de Toxicidade , Xenobióticos/toxicidade
5.
Arch Toxicol ; 89(2): 269-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25618548

RESUMO

A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.


Assuntos
Encéfalo/efeitos dos fármacos , Feto/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/métodos , Guias como Assunto , Humanos , Medição de Risco
6.
Reproduction ; 147(4): 477-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24298045

RESUMO

Bisphenol A (BPA) is widely detected in human urine and blood. BPA has been reported to impair many endpoints for reproductive and neurological development; however, it is controversial whether BPA has effects in the microgram per kilogram dose range. The aim of the current study was to examine the influence of BPA on early sexual development in male and female rats at dose levels covering both regulatory no observed adverse effect levels (NOAELs) (5 and 50 mg/kg bw per day) as well as doses in the microgram per kilogram dose range (0.025 and 0.25 mg/kg bw per day). Time-mated Wistar rats (n=22) were gavaged during pregnancy and lactation from gestation day 7 to pup day 22 with 0, 0.025, 0.25, 5 or 50 mg/kg bw per day BPA. From 0.250 mg/kg and above, male anogenital distance (AGD) was significantly decreased, whereas decreased female AGD was seen from 0.025 mg/kg bw per day and above. Moreover, the incidence of nipple retention in males appeared to increase dose relatedly and the increase was statistically significant at 50 mg/kg per day. No significant changes in reproductive organ weights in the 16-day-old males and females and no signs of maternal toxicity were seen. The decreased AGD at birth in both sexes indicates effects on prenatal sexual development and provides new evidence of low-dose adverse effects of BPA in rats in the microgram per kilogram dose range. The NOAEL in this study is clearly below 5 mg/kg for BPA, which is used as the basis for establishment of the current tolerable daily intake (TDI) by EFSA; thus a reconsideration of the current TDI of BPA appears warranted.


Assuntos
Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Processos de Determinação Sexual/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Compostos Benzidrílicos/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Fenóis/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Wistar , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos
7.
Reproduction ; 147(4): 489-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24298046

RESUMO

Reproductive toxicity was investigated in rats after developmental exposure to a mixture of 13 endocrine-disrupting contaminants, including pesticides, plastic and cosmetic ingredients, and paracetamol. The mixture was composed on the basis of information about high-end human exposures, and the dose levels reflecting 100, 200, and 450 times this exposure were tested. The compounds were also grouped according to their estrogenicity or anti-androgenicity, and their joint effects were tested at two different doses, with each group reflecting 200 or 450 times human exposure. In addition, a single paracetamol dose was tested (350 mg/kg per day). All exposures and a vehicle were administered by oral gavage to time-mated Wistar dams rats throughout gestation and lactation, and their offspring were assessed for reproductive effects at birth and in prepuberty. The mixture doses, which included the anti-androgenic compounds, affected the male offspring by causing decreased anogenital distance, increased nipple retention (NR), and reduced ventral prostate weights, at both medium and high doses. In addition, the weights of the levator ani/bulbocavernosus muscle (LABC) were decreased at the high dose of anti-androgen mixture. No effects were seen after exposure to the estrogenic chemicals alone, whereas males exposed solely to paracetamol showed decreased LABC weights and increased NR. Thus adverse reproductive effects were observed at mixtures reflecting 200 times high-end human exposure, which is relatively close to the safety margin covered by the regulatory uncertainty factor of 100. This suggests that highly exposed human population groups may not be sufficiently protected against mixtures of endocrine-disrupting chemicals.


Assuntos
Misturas Complexas/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Crescimento e Desenvolvimento/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Animais Lactentes , Feminino , Masculino , Parto/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Maturidade Sexual/efeitos dos fármacos , Desmame
8.
Reproduction ; 147(4): 465-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24287426

RESUMO

This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.


Assuntos
Envelhecimento/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Genitália/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Acetaminofen/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Cânfora/análogos & derivados , Cânfora/toxicidade , Cinamatos/toxicidade , Feminino , Genitália/embriologia , Genitália/crescimento & desenvolvimento , Masculino , Parabenos/toxicidade , Fenóis/toxicidade , Gravidez , Ratos , Ratos Wistar
9.
Toxicology ; 505: 153822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685447

RESUMO

Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16 mg/kg/day(d) MMI or 25 and 50 mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.


Assuntos
Hipocampo , Metimazol , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Metimazol/toxicidade , Gravidez , Ratos , Iodeto Peroxidase/genética , Transcriptoma/efeitos dos fármacos , Antitireóideos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Inibidores Enzimáticos/farmacologia
10.
Open Res Eur ; 4: 68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883262

RESUMO

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA