Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Oncol ; 16(9): 1913-1930, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35075772

RESUMO

In addition to mutations, epigenetic alterations are important contributors to malignant transformation and tumor progression. The aim of this work was to identify epigenetic events in which promoter or gene body DNA methylation induces gene expression changes that drive melanocyte malignant transformation and metastasis. We previously developed a linear mouse model of melanoma progression consisting of spontaneously immortalized melanocytes, premalignant melanocytes, a nonmetastatic tumorigenic, and a metastatic cell line. Here, through the integrative analysis of methylome and transcriptome data, we identified the relationship between promoter and/or gene body DNA methylation alterations and gene expression in early, intermediate, and late stages of melanoma progression. We identified adenylate cyclase type 3 (Adcy3) and inositol polyphosphate 4-phosphatase type II (Inpp4b), which affect tumor growth and metastatic potential, respectively. Importantly, the gene expression and DNA methylation profiles found in this murine model of melanoma progression were correlated with available clinical data from large population-based primary melanoma cohorts, revealing potential prognostic markers.


Assuntos
Metilação de DNA , Melanoma , Animais , Transformação Celular Neoplásica/genética , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Camundongos , Fenótipo , Prognóstico
2.
Neoplasia ; 23(4): 439-455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33845354

RESUMO

Despite advances in therapeutics, the progression of melanoma to metastasis still confers a poor outcome to patients. Nevertheless, there is a scarcity of biological models to understand cellular and molecular changes taking place along disease progression. Here, we characterized the transcriptome profiles of a multi-stage murine model of melanoma progression comprising a nontumorigenic melanocyte lineage (melan-a), premalignant melanocytes (4C), nonmetastatic (4C11-) and metastasis-prone (4C11+) melanoma cells. Clustering analyses have grouped the 4 cell lines according to their differentiated (melan-a and 4C11+) or undifferentiated/"mesenchymal-like" (4C and 4C11-) morphologies, suggesting dynamic gene expression patterns associated with the transition between these phenotypes. The cell plasticity observed in the murine melanoma progression model was corroborated by molecular markers described during stepwise human melanoma differentiation, as the differentiated cell lines in our model exhibit upregulation of transitory and melanocytic markers, whereas "mesenchymal-like" cells show increased expression of undifferentiated and neural crest-like markers. Sets of differentially expressed genes (DEGs) were detected at each transition step of tumor progression, and transcriptional signatures related to malignancy, metastasis and epithelial-to-mesenchymal transition were identified. Finally, DEGs were mapped to their human orthologs and evaluated in uni- and multivariate survival analyses using gene expression and clinical data of 703 drug-naïve primary melanoma patients, revealing several independent candidate prognostic markers. Altogether, these results provide novel insights into the molecular mechanisms underlying the phenotypic switch taking place during melanoma progression, reveal potential drug targets and prognostic biomarkers, and corroborate the translational relevance of this unique sequential model of melanoma progression.


Assuntos
Plasticidade Celular/genética , Progressão da Doença , Melanoma/genética , Melanoma/patologia , Transcriptoma/genética , Animais , Biomarcadores Tumorais/análise , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanócitos/patologia , Camundongos , Metástase Neoplásica/genética , Fenótipo , Prognóstico , RNA Mensageiro/genética , Análise de Sequência de RNA
3.
Neoplasia ; 23(8): 823-834, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246986

RESUMO

Deregulation of miRNAs contributes to the development of distinct cancer types, including melanoma, an aggressive form of skin cancer characterized by high metastatic potential and poor prognosis. The expression of a set of 580 miRNAs was investigated in a model of murine melanoma progression, comprising non-metastatic (4C11-) and metastatic melanoma (4C11+) cells. A significant increase in miR-138-5p expression was found in the metastatic 4C11+ melanoma cells compared to 4C11-, which prompted us to investigate its role in melanoma aggressiveness. Functional assays, including anoikis resistance, colony formation, collective migration, serum-deprived growth capacity, as well as in vivo tumor growth and experimental metastasis were performed in 4C11- cells stably overexpressing miR-138-5p. miR-138-5p induced an aggressive phenotype in mouse melanoma cell lines leading to increased proliferation, migration and cell viability under stress conditions. Moreover, by overexpressing miR-138-5p, low-growing and non-metastatic 4C11- cells became highly proliferative and metastatic in vivo, similar to the metastatic 4C11+ cells. Luciferase reporter analysis identified the tumor suppressor Trp53 as a direct target of miR-138-5p. Using data sets from independent melanoma cohorts, miR-138-5p and P53 expression were also found deregulated in human melanoma samples, with their levels negatively and positively correlated with prognosis, respectively. Our data shows that the overexpression of miR-138-5p contributes to melanoma metastasis through the direct suppression of Trp53.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/mortalidade , MicroRNAs/genética , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Humanos , Melanoma/patologia , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA