Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Reproduction ; 165(6): 617-628, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068140

RESUMO

In brief: Developing novel therapies to cure and manage endometriosis is a major unmet need that will benefit over 180 million women worldwide. Results from the current study suggest that inhibitors of oxidative phosphorylation may serve as novel agents for the treatment of endometriosis. Abstract: Current therapeutic strategies for endometriosis focus on symptom management and are not curative. Here, we provide evidence supporting the inhibition of oxidative phosphorylation (OXPHOS) as a novel treatment strategy for endometriosis. Additionally, we report an organotypic organ-on-a-chip luminal model for endometriosis. The OXPHOS inhibitors, curcumin, plumbagin, and the FDA-approved anti-malarial agent, atovaquone, were tested against the endometriosis cell line, 12Z, in conventional as well as the new organotypic model. The results suggest that all three compounds inhibit proliferation and cause cell death of the endometriotic cells by inhibiting OXPHOS and causing an increase in intracellular oxygen radicals. The oxidative stress mediated by curcumin, plumbagin, and atovaquone causes DNA double-strand breaks as indicated by the elevation of phospho-γH2Ax. Mitochondrial energetics shows a significant decrease in oxygen consumption in 12Z cells. These experiments also highlight differences in the mechanism of action as curcumin and plumbagin inhibit complex I whereas atovaquone blocks complexes I, II, and III. Real-time assessment of cells in the lumen model showed inhibition of migration in response to the test compounds. Additionally, using two-photon lifetime imaging, we demonstrate that the 12Z cells in the lumen show decreased redox ratio (NAD(P)H/FAD) and lower fluorescence lifetime of NAD(P)H in the treated cells confirming major metabolic changes in response to inhibition of mitochondrial electron transport. The robust chemotoxic responses observed with atovaquone suggest that this anti-malarial agent may be repurposed for the effective treatment of endometriosis.


Assuntos
Antimaláricos , Antineoplásicos , Curcumina , Endometriose , Feminino , Humanos , Curcumina/farmacologia , Atovaquona/farmacologia , Fosforilação Oxidativa , Endometriose/tratamento farmacológico , NAD , Proliferação de Células
2.
Chem Soc Rev ; 49(17): 6402-6442, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32760967

RESUMO

Microfluidic lumen-based systems are microscale models that recapitulate the anatomy and physiology of tubular organs. These technologies can mimic human pathophysiology and predict drug response, having profound implications for drug discovery and development. Herein, we review progress in the development of microfluidic lumen-based models from the 2000s to the present. The core of the review discusses models for mimicking blood vessels, the respiratory tract, the gastrointestinal tract, renal tubules, and liver sinusoids, and their application to modeling organ-specific diseases. We also highlight emerging application areas, such as the lymphatic system, and close the review discussing potential future directions.


Assuntos
Biomimética , Dispositivos Lab-On-A-Chip , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Materiais Biomiméticos , Humanos
3.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260673

RESUMO

Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present. In this work, we used a microfluidic device to study tumor metabolic vulnerability to several metabolic inhibitors. The microdevice included a central chamber to culture tumor cells in a three-dimensional (3D) matrix, and a lumen in one of the chamber flanks. This design created an asymmetric nutrient distribution across the central chamber, generating gradients of cell viability. The results revealed that tumor cells located in a nutrient-enriched environment showed low to no sensitivity to metabolic inhibitors targeting glycolysis, fatty acid oxidation, or oxidative phosphorylation. Conversely, when cell density inside of the model was increased, compromising nutrient supply, the addition of these metabolic inhibitors disrupted cellular redox balance and led to tumor cell death.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Modelos Biológicos , Neoplasias/metabolismo , Contagem de Células , Humanos , Células MCF-7 , Necrose , Neoplasias/patologia , Hipóxia Tumoral
4.
Molecules ; 24(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801265

RESUMO

Luminal geometries are common structures in biology, which are challenging to mimic using conventional in vitro techniques based on the use of Petri dishes. In this context, microfluidic systems can mimic the lumen geometry, enabling a large variety of studies. However, most microfluidic models still rely on polydimethylsiloxane (PDMS), a material that is not amenable for high-throughput fabrication and presents some limitations compared with other materials such as polystyrene. Thus, we have developed a microfluidic device array to generate multiple bio-relevant luminal structures utilizing polystyrene and micro-milling. This platform offers a scalable alternative to conventional microfluidic devices designed in PDMS. Additionally, the use of polystyrene has well described advantages, such as lower permeability to hydrophobic molecules compared with PDMS, while maintaining excellent viability and optical properties. Breast cancer cells cultured in the devices exhibited high cell viability similar to PDMS-based microdevices. Further, co-culture experiments with different breast cell types showed the potential of the model to study breast cancer invasion. Finally, we demonstrated the potential of the microfluidic array for drug screening, testing chemotherapy drugs and photodynamic therapy agents for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Equipamento , Humanos , Microfluídica/métodos
5.
Adv Exp Med Biol ; 936: 11-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27739041

RESUMO

This chapter explores the use of mathematical models as promising and powerful tools to understand the complexity of tumors and their, frequently, hypoxic environment. We focus on gliomas, which are primary brain tumors derived from glial cells, mainly astrocytes and/or oligodendrocytes. A variety of mathematical models, based on ordinary and/or partial differential equations, have been developed both at the micro and macroscopic levels. The aim here is to describe in a quantitative way key physiopathological mechanisms relevant in these types of malignancies and to suggest optimal therapeutical strategies. More specifically, we consider novel therapies targeting thromboembolic phenomena to decrease cell invasion in high grade glioma or to delay the malignant transformation in low grade gliomas. This study has been the basis of a multidisciplinary collaboration involving, among others, neuro-oncologists, radiation oncologists, pathologists, cancer biologists, surgeons and mathematicians.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Glioma/tratamento farmacológico , Modelos Estatísticos , Tromboembolia/prevenção & controle , Hipóxia Tumoral , Trombose Venosa/prevenção & controle , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/metabolismo , Contagem de Células , Movimento Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Glioma/irrigação sanguínea , Glioma/complicações , Glioma/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Gradação de Tumores , Invasividade Neoplásica , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Tromboembolia/complicações , Tromboembolia/patologia , Microambiente Tumoral/efeitos dos fármacos , Trombose Venosa/complicações , Trombose Venosa/patologia
6.
Molecules ; 21(7)2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27355941

RESUMO

Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ). Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells' invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats' behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Glioma/genética , Glioma/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glioma/tratamento farmacológico , Humanos , Atividade Motora/efeitos dos fármacos , Invasividade Neoplásica , Ratos
7.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37745595

RESUMO

The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development. Here we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated extracellular cell matrix (ECM) bridge to elucidate how naive primary neutrophils respond to both patient derived tumor cells and tumor cell lines. Our data demonstrated that both patient derived head and neck squamous cell carcinoma (HNSCC) tumor cells and MDA-MB-231 breast cancer cells trigger cluster formation in neutrophils, and the swarm of neutrophils restricts tumor invasion through the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NETs) release within the neutrophil cluster. However, we also observed that the presence of neutrophils downregulates granzyme B in NK-92 cells and the resulting NETs can obstruct NK cells from penetrating the tumor mass in vitro suggesting a dual role for neutrophils in the TME. Further, using label-free optical metabolic imaging (OMI) we observed changes in the metabolic activities of primary neutrophils during the different swarming phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities (lower nicotinamide adenine dinucleotide phosphate (NAD(P)H) mean lifetime) compared to non-contact neutrophils.

8.
iScience ; 27(8): 110525, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39156641

RESUMO

Elevated pernio incidence was observed during the COVID-19 pandemic. This prospective study enrolled subjects with pandemic-associated pernio in Wisconsin and Switzerland. Because pernio is a cutaneous manifestation of the interferonopathies, and type I interferon (IFN-I) immunity is critical to COVID-19 recovery, we tested the hypothesis that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated IFN-I signaling might underlie some pernio cases. Tissue-level IFN-I activity and plasmacytoid dendritic cell infiltrates were demonstrated in 100% of the Wisconsin cases. Across both cohorts, sparse SARS-CoV-2 RNA was captured in 25% (6/22) of biopsies, all with high inflammation. Affected patients lacked adaptive immunity to SARS-CoV-2. A hamster model of intranasal SARS-CoV-2 infection was used as a proof-of-principle experiment: RNA was detected in lungs and toes with IFN-I activity at both the sites, while replicating virus was found only in the lung. These data support a viral trigger for some pernio cases, where sustained local IFN-I activity can be triggered in the absence of seroconversion.

9.
Bioengineering (Basel) ; 10(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237642

RESUMO

Current available animal and in vitro cell-based models for studying brain-related pathologies and drug evaluation face several limitations since they are unable to reproduce the unique architecture and physiology of the human blood-brain barrier. Because of that, promising preclinical drug candidates often fail in clinical trials due to their inability to penetrate the blood-brain barrier (BBB). Therefore, novel models that allow us to successfully predict drug permeability through the BBB would accelerate the implementation of much-needed therapies for glioblastoma, Alzheimer's disease, and further disorders. In line with this, organ-on-chip models of the BBB are an interesting alternative to traditional models. These microfluidic models provide the necessary support to recreate the architecture of the BBB and mimic the fluidic conditions of the cerebral microvasculature. Herein, the most recent advances in organ-on-chip models for the BBB are reviewed, focusing on their potential to provide robust and reliable data regarding drug candidate ability to reach the brain parenchyma. We point out recent achievements and challenges to overcome in order to advance in more biomimetic in vitro experimental models based on OOO technology. The minimum requirements that should be met to be considered biomimetic (cellular types, fluid flow, and tissular architecture), and consequently, a solid alternative to in vitro traditional models or animals.

10.
Microsyst Nanoeng ; 9: 154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106674

RESUMO

Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g., cytotoxic T and natural killer cells). This microenvironment is characterized by hypoxia, nutrient starvation, accumulated waste products, and acidic pH. Tumor-hijacked cells, such as fibroblasts, macrophages, and T regulatory cells, also contribute to this inhospitable microenvironment for immune cells by secreting immunosuppressive cytokines that suppress the antitumor immune response and lead to immune evasion. Thus, there is a strong interest in developing new drugs and cell formulations that modulate the tumor microenvironment and reduce tumor cell immune evasion. Microphysiological systems (MPSs) are versatile tools that may accelerate the development and evaluation of these therapies, although specific examples showcasing the potential of MPSs remain rare. Advances in microtechnologies have led to the development of sophisticated microfluidic devices used to recapitulate tumor complexity. The resulting models, also known as microphysiological systems (MPSs), are versatile tools with which to decipher the molecular mechanisms driving immune cell antitumor cytotoxicity, immune cell exhaustion, and immune cell exclusion and to evaluate new targeted immunotherapies. Here, we review existing microphysiological platforms to study immuno-oncological applications and discuss challenges and opportunities in the field.

11.
Lab Chip ; 23(18): 3945-3960, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37448230

RESUMO

As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed in vivo. We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke.


Assuntos
Astrócitos , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/metabolismo , Encéfalo , Reperfusão , Dispositivos Lab-On-A-Chip
12.
Commun Biol ; 6(1): 925, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689746

RESUMO

Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression. Current in vitro technologies struggle to capture the complexity of these transient microenvironmental gradients, do not provide dynamic control over the gradient profile, are complex and poorly suited for high throughput applications. Therefore, we have designed Griddent, a user-friendly platform with the capability of generating controllable and reversible gradients in a 3D microenvironment. Our platform consists of an array of 32 microfluidic chambers connected to a 384 well-array through a diffusion port at the bottom of each reservoir well. The diffusion ports are optimized to ensure gradient stability and facilitate manual micropipette loading. This platform is compatible with molecular and functional spatial biology as well as optical and fluorescence microscopy. In this work, we have used this platform to study cancer progression.


Assuntos
Microfluídica , Neoplasias , Humanos , Citocinas , Difusão , Exobiologia , Microambiente Tumoral
13.
Nat Commun ; 14(1): 6681, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865647

RESUMO

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV+ head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus. Here, we evaluate multiple aspects of the memory-like natural killer cell response in human-derived bioengineered environments, including immune cell extravasation, tumor penetration, tumor killing, T cell dependence, virus suppression, and compatibility with retroviral medication. Overall, these results suggest that memory-like natural killer cells are capable of operating without T cell assistance and could simultaneously destroy head and neck cancer cells as well as reduce viral latency.


Assuntos
Infecções por HIV , Neoplasias de Cabeça e Pescoço , Vírus , Humanos , HIV , Células Matadoras Naturais , Imunoterapia/métodos
14.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454888

RESUMO

During the second half of the twentieth century, oncology adopted a tumor-centric approach to cancer treatment, focusing primarily on the tumor cell to identify new therapeutic targets [...].

15.
Nat Commun ; 13(1): 3086, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654785

RESUMO

Precision oncology continues to challenge the "one-size-fits-all" dogma. Under the precision oncology banner, cancer patients are screened for molecular tumor alterations that predict treatment response, ideally leading to optimal treatments. Functional assays that directly evaluate treatment efficacy on the patient's cells offer an alternative and complementary tool to improve the accuracy of precision oncology. Unfortunately, traditional Petri dish-based assays overlook much tumor complexity, limiting their potential as predictive functional biomarkers. Here, we review past applications of microfluidic systems for precision medicine and discuss the present and potential future role of functional microfluidic assays as treatment predictors.


Assuntos
Neoplasias , Medicina de Precisão , Bioensaio , Humanos , Microfluídica , Neoplasias/genética , Neoplasias/terapia
16.
Biomaterials ; 283: 121454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35299086

RESUMO

Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Microambiente Tumoral
17.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267541

RESUMO

BRAFV600E is the most common mutation driver in melanoma. This mutation is known to cause a brief burst of proliferation followed by growth arrest and senescence, which prevent an uncontrolled cell proliferation. This phenomenon is known as oncogene-induced senescence (OIS) and OIS escape is thought to lead to melanomagenesis. Much attention has been focused on the melanocyte-intrinsic mechanisms that contribute to senescence escape. Additional genetic events such as the loss of tumor suppressor PTEN and/or epigenetic changes that contribute to senescence escape have been described. However, the role of the skin microenvironment-specifically, the role of epidermal keratinocytes-on melanomagenesis is not fully understood. In this study, we employ a microfluidic platform to study the interaction between melanocytes expressing the BRAFV600E mutation as well as keratinocytes and dermal fibroblasts. We demonstrate that keratinocytes suppress senescence-related genes and promote the proliferation of transformed melanocytes. We also show that a keratinocyte-conditioned medium can alter the secretion of both pro- and anti-tumorigenic factors by transformed melanocytes. In addition, we show that melanocytes and keratinocytes from donors of white European and black African ancestry display different crosstalks; i.e., white keratinocytes appear to promote a more pro-tumorigenic phenotype compared with black keratinocytes. These data suggest that keratinocytes exert their influence on melanomagenesis both by suppressing senescence-related genes in melanocytes and by affecting the balance of the melanocyte-secreted factors that favor tumorigenesis.

18.
Sci Adv ; 8(18): eabm8012, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544643

RESUMO

Protozoan parasites that infect humans are widespread and lead to varied clinical manifestations, including life-threatening illnesses in immunocompromised individuals. Animal models have provided insight into innate immunity against parasitic infections; however, species-specific differences and complexity of innate immune responses make translation to humans challenging. Thus, there is a need for in vitro systems that can elucidate mechanisms of immune control and parasite dissemination. We have developed a human microphysiological system of intestinal tissue to evaluate parasite-immune-specific interactions during infection, which integrates primary intestinal epithelial cells and immune cells to investigate the role of innate immune cells during epithelial infection by the protozoan parasite, Toxoplasma gondii, which affects billions of people worldwide. Our data indicate that epithelial infection by parasites stimulates a broad range of effector functions in neutrophils and natural killer cell-mediated cytokine production that play immunomodulatory roles, demonstrating the potential of our system for advancing the study of human-parasite interactions.


Assuntos
Parasitos , Toxoplasma , Animais , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Neutrófilos
19.
Cells ; 11(15)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-35954200

RESUMO

Stroke is one of the main causes of death in the US and post-stroke treatment options remain limited. Ischemic stroke is caused by a blood clot that compromises blood supply to the brain, rapidly leading to tissue death at the core of the infarcted area surrounded by a hypoxic and nutrient-starved region known as the penumbra. Recent evidence suggests that astrocytes in the penumbral region play a dual role in stroke response, promoting further neural and tissue damage or improving tissue repair depending on the microenvironment. Thus, astrocyte response in the hypoxic penumbra could promote tissue repair after stroke, salvaging neurons in the affected area and contributing to cognitive recovery. However, the complex microenvironment of ischemic stroke, characterized by gradients of hypoxia and nutrients, poses a unique challenge for traditional in vitro models, which in turn hinders the development of novel therapies. To address this challenge, we have developed a novel, polystyrene-based microfluidic device to model the necrotic and penumbral region induced by an ischemic stroke. We demonstrated that when subjected to hypoxia, and nutrient starvation, astrocytes within the penumbral region generated in the microdevice exhibited long-lasting, significantly altered signaling capacity including calcium signaling impairment.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Astrócitos , Humanos , Hipóxia , Microfluídica
20.
Artigo em Inglês | MEDLINE | ID: mdl-34901585

RESUMO

Breakthroughs in metastatic breast cancer care require new model systems that can identify the unique features and vulnerabilities of each cancer. Primary tumor cultures are proposed to efficiently screen multiple treatment options in a patient-specific strategy to maximize therapeutic benefit, minimize toxicity, and enable mechanistic insights that inspire future biomarkers for patient selection. To realize the potential of patient-specific cultures, new tools are needed to capture cell-by-cell variability in behavior and dynamic response to treatments in living 3D specimens. Potential bioengineering tools that can achieve this include optical microscopy to image single-cell dynamics and microphysiological in vitro systems to evaluate cell-cell interactions and immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA