Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Genet ; 17(11): e1009882, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723963

RESUMO

Cytoplasmic aggregation of Tar-DNA/RNA binding protein 43 (TDP-43) occurs in 97 percent of amyotrophic lateral sclerosis (ALS), ~40% of frontotemporal dementia (FTD) and in many cases of Alzheimer's disease (AD). Cytoplasmic TDP-43 inclusions are seen in both sporadic and familial forms of these disorders, including those cases that are caused by repeat expansion mutations in the C9orf72 gene. To identify downstream mediators of TDP-43 toxicity, we expressed human TDP-43 in a subset of Drosophila motor neurons. Such expression causes age-dependent deficits in negative geotaxis behavior. Using this behavioral readout of locomotion, we conducted an shRNA suppressor screen and identified 32 transcripts whose knockdown was sufficient to ameliorate the neurological phenotype. The majority of these suppressors also substantially suppressed the negative effects on lifespan seen with glial TDP-43 expression. In addition to identification of a number of genes whose roles in neurodegeneration were not previously known, our screen also yielded genes involved in chromatin regulation and nuclear/import export- pathways that were previously identified in the context of cell based or neurodevelopmental suppressor screens. A notable example is SF2, a conserved orthologue of mammalian SRSF1, an RNA binding protein with roles in splicing and nuclear export. Our identification SF2/SRSF1 as a potent suppressor of both neuronal and glial TDP-43 toxicity also provides a convergence with C9orf72 expansion repeat mediated neurodegeneration, where this gene also acts as a downstream mediator.


Assuntos
Envelhecimento/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , Neuroglia/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Humanos
2.
Nature ; 499(7458): 346-9, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23783513

RESUMO

The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.


Assuntos
Transformação Celular Neoplásica/metabolismo , Ácido Hialurônico/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Células Cultivadas , Inibição de Contato , Resistência à Doença , Fibroblastos/metabolismo , Glucuronosiltransferase/química , Cobaias , Humanos , Hialuronan Sintases , Camundongos , Ratos-Toupeira , Dados de Sequência Molecular
3.
Proc Natl Acad Sci U S A ; 112(4): 1053-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25550505

RESUMO

The naked mole rat (Heterocephalus glaber) is a long-lived and tumor-resistant rodent. Tumor resistance in the naked mole rat is mediated by the extracellular matrix component hyaluronan of very high molecular weight (HMW-HA). HMW-HA triggers hypersensitivity of naked mole rat cells to contact inhibition, which is associated with induction of the INK4 (inhibitors of cyclin dependent kinase 4) locus leading to cell-cycle arrest. The INK4a/b locus is among the most frequently mutated in human cancer. This locus encodes three distinct tumor suppressors: p15(INK4b), p16(INK4a), and ARF (alternate reading frame). Although p15(INK4b) has its own ORF, p16(INK4a) and ARF share common second and third exons with alternative reading frames. Here, we show that, in the naked mole rat, the INK4a/b locus encodes an additional product that consists of p15(INK4b) exon 1 joined to p16(INK4a) exons 2 and 3. We have named this isoform pALT(INK4a/b) (for alternative splicing). We show that pALT(INK4a/b) is present in both cultured cells and naked mole rat tissues but is absent in human and mouse cells. Additionally, we demonstrate that pALT(INK4a/b) expression is induced during early contact inhibition and upon a variety of stresses such as UV, gamma irradiation-induced senescence, loss of substrate attachment, and expression of oncogenes. When overexpressed in naked mole rat or human cells, pALT(INK4a/b) has stronger ability to induce cell-cycle arrest than either p15(INK4b) or p16(INK4a). We hypothesize that the presence of the fourth product, pALT(INK4a/b) of the INK4a/b locus in the naked mole rat, contributes to the increased resistance to tumorigenesis of this species.


Assuntos
Processamento Alternativo/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Loci Gênicos/fisiologia , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Senescência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Camundongos , Ratos-Toupeira , Ratos , Especificidade da Espécie
4.
J Biol Chem ; 291(50): 26045-26055, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27803160

RESUMO

The accumulation of oxidative damage is strongly linked to age-dependent declines in cell function, but the contribution of oxidative damage to morbidity is still debated. Many organisms seem to tolerate oxidative damage, and the extension of health span and life span by augmenting antioxidant activity has been inconsistent. Here we use the Drosophila model system to investigate the relationship among oxidative stress, health span, and life span. The oxidation-dependent dissociation of the Calstabin protein from the ryanodine receptor has been shown to result in reduced muscle function in mammals. The S107 molecule is able to reestablish this binding resulting in improved muscle function. We find that S107 is able to restore motor function in aging Drosophila to young levels, and this effect of S107 is absent in calstabin (FK506-BP2) mutants. Interestingly, FK506-BP2 mutant flies have reduced sensitivity to the effects of age and oxidative stress on motor function between 7 and 35 days of age. Muscle expression of FK506-BP2 in FK506-BP2 mutants completely restores the sensitivity of motor function to both age and oxidative stress, supporting the idea that the age-dependent decline in motor function in Drosophila requires FK506-BP2 function within the muscle. Although FK506-BP2 mutant flies are found to have less sensitivity to oxidative stress, FK506-BP2 mutants do not live longer than wild type. These results demonstrate that the deleterious effects of oxidation on motor function early in life are the result of a singular event that does not compromise survival.


Assuntos
Proteínas de Drosophila/metabolismo , Longevidade/efeitos dos fármacos , Músculos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/metabolismo , Tiazepinas/farmacologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Longevidade/genética , Mutação , Proteínas de Ligação a Tacrolimo/genética
5.
Proc Natl Acad Sci U S A ; 110(43): 17350-5, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24082110

RESUMO

The naked mole-rat (Heterocephalus glaber) is a subterranean eusocial rodent with a markedly long lifespan and resistance to tumorigenesis. Multiple data implicate modulation of protein translation in longevity. Here we report that 28S ribosomal RNA (rRNA) of the naked mole-rat is processed into two smaller fragments of unequal size. The two breakpoints are located in the 28S rRNA divergent region 6 and excise a fragment of 263 nt. The excised fragment is unique to the naked mole-rat rRNA and does not show homology to other genomic regions. Because this hidden break site could alter ribosome structure, we investigated whether translation rate and amino acid incorporation fidelity were altered. We report that naked mole-rat fibroblasts have significantly increased translational fidelity despite having comparable translation rates with mouse fibroblasts. Although we cannot directly test whether the unique 28S rRNA structure contributes to the increased fidelity of translation, we speculate that it may change the folding or dynamics of the large ribosomal subunit, altering the rate of GTP hydrolysis and/or interaction of the large subunit with tRNA during accommodation, thus affecting the fidelity of protein synthesis. In summary, our results show that naked mole-rat cells produce fewer aberrant proteins, supporting the hypothesis that the more stable proteome of the naked mole-rat contributes to its longevity.


Assuntos
Fibroblastos/metabolismo , Biossíntese de Proteínas/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Actinas/metabolismo , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Eletroforese em Gel de Ágar , Fibroblastos/citologia , Longevidade/genética , Luciferases/genética , Luciferases/metabolismo , Ratos-Toupeira , Dados de Sequência Molecular , Mutação , Taxa de Mutação , Proteoma/genética , Proteoma/metabolismo , Ratos , Proteína S6 Ribossômica/metabolismo , Homologia de Sequência do Ácido Nucleico
6.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030702

RESUMO

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Assuntos
Genoma , Ratos-Toupeira , Humanos , Cobaias , Animais , Sintenia , Hibridização in Situ Fluorescente , Cariótipo , Ratos-Toupeira/genética
7.
Proc Natl Acad Sci U S A ; 106(46): 19352-7, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19858485

RESUMO

The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed "early contact inhibition." Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27(Kip1). In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16(Ink4a). Furthermore, we show that the roles of p16(Ink4a) and p27(Kip1) in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16(Ink4a), and regular contact inhibition is controlled by p27(Kip1). We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.


Assuntos
Transformação Celular Neoplásica , Modelos Animais de Doenças , Fibroblastos/metabolismo , Longevidade , Ratos-Toupeira , Neoplasias/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Comunicação Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Biol Rev Camb Philos Soc ; 97(1): 115-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476892

RESUMO

The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.


Assuntos
Longevidade , Ratos-Toupeira , Animais , Biologia
9.
Curr Biol ; 18(18): 1409-14, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18804376

RESUMO

Male killing is caused by diverse microbial taxa in a wide range of arthropods. This phenomenon poses important challenges to understanding the dynamics of sex ratios and host-pathogen interactions. However, the mechanisms of male killing are largely unknown. Evidence from one case in Drosophila suggests that bacteria can target components of the male-specific sex-determination pathway. Here, we investigated male killing by the bacterium Arsenophonus nasoniae in the haplo-diploid wasp Nasonia vitripennis, in which females develop as diploids from fertilized eggs and males develop parthenogenetically as haploids from unfertilized eggs. We found that Arsenophonus inhibits the formation of maternal centrosomes, organelles required specifically for early male embryonic development, resulting in unorganized mitotic spindles and developmental arrest well before the establishment of somatic sexual identity. Consistent with these results, rescue of Arsenophonus-induced male lethality was achieved by fertilization with sperm bearing the supernumerary chromosome paternal sex ratio (PSR), which destroys the paternal genome but bypasses the need for maternal centrosomes by allowing transmission of the sperm-derived centrosome into the egg. These findings reveal a novel mechanism of male killing in Nasonia, demonstrating that bacteria have evolved different mechanisms for inducing male killing in the Arthropods.


Assuntos
Agressão , Centrossomo/fisiologia , Vespas/genética , Animais , Diploide , Embrião não Mamífero/fisiologia , Feminino , Masculino , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Partenogênese , Espermatozoides/fisiologia , Vespas/microbiologia
11.
Aging Cell ; 17(2)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411505

RESUMO

The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age.


Assuntos
Drosophila melanogaster/genética , Drosophila/genética , Metaloproteinase 1 da Matriz/genética , Neurônios Motores/metabolismo , Transcriptoma/genética , Animais , Drosophila/metabolismo
12.
Mol Biol Cell ; 29(12): 1413-1421, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688792

RESUMO

The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.


Assuntos
Drosophila melanogaster/anatomia & histologia , Imageamento Tridimensional , Microscopia Confocal/métodos , Envelhecimento/fisiologia , Animais , Comunicação Celular , Drosophila melanogaster/embriologia , Terminações Pré-Sinápticas/metabolismo , Frações Subcelulares/metabolismo
13.
Sci Rep ; 7(1): 5, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28127055

RESUMO

Maximal lifespan of mammalian species, even if closely related, may differ more than 10-fold, however the nature of the mechanisms that determine this variability is unresolved. Here, we assess the relationship between maximal lifespan duration and concentrations of more than 20,000 lipid compounds, measured in 669 tissue samples from 6 tissues of 35 species representing three mammalian clades: primates, rodents and bats. We identify lipids associated with species' longevity across the three clades, uncoupled from other parameters, such as basal metabolic rate, body size, or body temperature. These lipids clustered in specific lipid classes and pathways, and enzymes linked to them display signatures of greater stabilizing selection in long-living species, and cluster in functional groups related to signaling and protein-modification processes. These findings point towards the existence of defined molecular mechanisms underlying variation in maximal lifespan among mammals.


Assuntos
Quirópteros/fisiologia , Lipídeos/análise , Longevidade , Primatas/fisiologia , Roedores/fisiologia , Animais , Redes e Vias Metabólicas
14.
Elife ; 52016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27525480

RESUMO

Altered insulin signaling has been linked to widespread nervous system dysfunction including cognitive dysfunction, neuropathy and susceptibility to neurodegenerative disease. However, knowledge of the cellular mechanisms underlying the effects of insulin on neuronal function is incomplete. Here, we show that cell autonomous insulin signaling within the Drosophila CM9 motor neuron regulates the release of neurotransmitter via alteration of the synaptic vesicle fusion machinery. This effect of insulin utilizes the FOXO-dependent regulation of the thor gene, which encodes the Drosophila homologue of the eif-4e binding protein (4eBP). A critical target of this regulatory mechanism is Complexin, a synaptic protein known to regulate synaptic vesicle exocytosis. We find that the amounts of Complexin protein observed at the synapse is regulated by insulin and genetic manipulations of Complexin levels support the model that increased synaptic Complexin reduces neurotransmission in response to insulin signaling.


Assuntos
Drosophila , Exocitose , Insulina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transdução de Sinais , Transmissão Sináptica , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo
15.
Front Cell Neurosci ; 9: 208, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074775

RESUMO

Two of the most salient phenotypes of aging are cognitive decline and loss of motor function, both of which are controlled by the nervous system. Cognition and muscle contraction require that neuronal synapses develop and maintain proper structure and function. We review the literature on how normal physiological aging disrupts central and peripheral synapse function including the degradation of structure and/or control of neurotransmission. Here we also attempt to connect the work done on the epigenetics of aging to the growing literature of how epigenetic mechanisms control synapse structure and function. Lastly, we address possible roles of epigenetic mechanisms to explain why the basal rates of age-related dysfunction vary so widely across individuals.

16.
Nat Commun ; 5: 3966, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24892994

RESUMO

The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma , Hipercapnia , Hipóxia , Spalax/genética , Estresse Fisiológico , Transcriptoma/genética , Animais , Escuridão , Perfilação da Expressão Gênica , Edição de RNA/genética , Elementos Nucleotídeos Curtos e Dispersos
17.
Aging (Albany NY) ; 5(4): 304-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23651613

RESUMO

The insulin/insulin-like growth factor signaling (IIS) pathway is a major conserved regulator of aging. Nematode, fruit fly and mouse mutants with reduced IIS signaling exhibit extended lifespan. These mutants are often dwarfs leading to the idea that small body mass correlates with longevity within species. However, when different species are compared, larger animals are typically longer-lived. Hence, the role of IIS in the evolution of life history traits remains unresolved. Here we used comparative approach to test whether IGF1R signaling changes in response to selection on lifespan or body mass and whether specific tissues are involved. The IGF1R levels in the heart, lungs, kidneys, and brains of sixteen rodent species with highly diverse lifespans and body masses were measured via immunoblot after epitope conservation analysis. We report that IGF1R levels display strong negative correlation with maximum lifespan only in brain tissue and no significant correlations with body mass for any organ. The brain-IGF1R and lifespan correlation holds when phylogenetic non-independence of data-points is taken into account. These results suggest that modulation of IGF1R signaling in nervous tissue, but not in the peripheral tissues, is an important factor in the evolution of longevity in mammals.


Assuntos
Encéfalo/metabolismo , Receptor IGF Tipo 1/metabolismo , Roedores/classificação , Roedores/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Epitopos , Dados de Sequência Molecular , Receptor IGF Tipo 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roedores/fisiologia , Alinhamento de Sequência , Especificidade da Espécie
18.
Front Genet ; 3: 319, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316215

RESUMO

Most rodents are small and short-lived, but several lineages have independently evolved long lifespans without a concomitant increase in body-mass. Most notable are the two subterranean species naked mole rat (NMR) and blind mole rat (BMR) which have maximum lifespans of 32 and 21 years, respectively. The longevity of these species has sparked interest in the tumor suppression strategies that may have also evolved, because for many rodent species (including mice, rats, guinea pigs, gerbils, and hamsters) tumors are a major source of late-life mortality. Here, we review the recent literature on anti-cancer mechanisms in long-lived rodents. Both NMR and BMR seem to have developed tumor defenses that rely on extra-cellular signals. However, while the NMR relies on a form of contact inhibition to suppress growth, the BMR evolved a mechanism mediated by the release of interferon, and rapid necrotic cell death. Although both organisms ultimately rely on canonical downstream tumor suppressors (pRB and p53) the studies reveal species can evolve different strategies to achieve tumor-resistance. Importantly, studies of these cancer-resistant rodents may benefit human health if such mechanisms can be activated in human cells.

19.
PLoS Negl Trop Dis ; 4(3): e627, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20231892

RESUMO

BACKGROUND: Sand flies (Diptera, Psychodidae, Phlebotominae) in the genus Lutzomyia are the predominant vectors of the protozoan disease leishmaniasis in the New World. Within the watershed of the Panama Canal, the cutaneous form of leishmaniasis is a continuous health threat for residents, tourists and members of an international research community. Here we report the results of screening a tropical forest assemblage of sand fly species for infection by both Leishmania and a microbe that can potentially serve in vector population control, the cytoplasmically transmitted rickettsia, Wolbachia pipientis. Knowing accurately which Lutzomyia species are present, what their evolutionary relationships are, and how they are infected by strains of both Leishmania and Wolbachia is of critical value for building strategies to mitigate the impact of this disease in humans. METHODOLOGY AND FINDINGS: We collected, sorted and then used DNA sequences to determine the diversity and probable phylogenetic relationships of the Phlebotominae occurring in the understory of Barro Colorado Island in the Republic of Panama. Sequence from CO1, the DNA barcoding gene, supported 18 morphology-based species determinations while revealing the presence of two possible "cryptic" species, one (Lu. sp. nr vespertilionis) within the Vespertilionis group, the other (Lu. gomezi) within the Lutzomyia-cruciata series. Using ITS-1 and "minicircle" primers we detected Leishmania DNA in 43.3% of Lu. trapidoi, 26.3% of Lu. gomezi individuals and in 0% of the other 18 sand fly species. Identical ITS-1 sequence was obtained from the Leishmania infecting Lu. trapidoi and Lu. gomezi, sequence which was 93% similar to Leishmania (viannia) naiffi in GenBank, a species previously unknown in Panama, but recognized as a type of cutaneous leishmaniasis vectored broadly across northern and central South America. Distinct strains of the intracellular bacterium Wolbachia were detected in three of 20 sand fly species, including Lu. trapidoi, in which it frequently co-occurred with Leishmania. CONCLUSIONS: Both morphological and molecular methods were used to examine an assemblage of 20 sand fly species occurring in the forests of the Panama Canal area. Two of these species, members of separate clades, were found to carry Leishmania at high frequency and hence are likely vectors of leishmaniasis to humans or other mammal species. A single Leishmania species, identified with high confidence as Le. naiffi, was carried by both species. That Le. naiffi is known to cause cutaneous lesions in South America but has hitherto not been reported or implicated in Panama opens the possibility that its range has recently expanded to include the Isthmus or that it occurs as a recent introduction. The occurrence of Leishmania and Wolbachia in Lu. trapidoi identifies one important vector of the disease as a potential target for gene introductions using Wolbachia population sweeps.


Assuntos
Variação Genética , Leishmania/isolamento & purificação , Psychodidae/classificação , Wolbachia/isolamento & purificação , Animais , Análise por Conglomerados , DNA de Protozoário/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Insetos/genética , Leishmania/genética , Dados de Sequência Molecular , Panamá , Filogenia , Psychodidae/genética , Psychodidae/microbiologia , Psychodidae/parasitologia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA