Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195076

RESUMO

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Assuntos
Infecções Bacterianas/imunologia , Plaquetas/imunologia , Animais , Bactérias/classificação , Plaquetas/citologia , Vasos Sanguíneos/lesões , Vasos Sanguíneos/patologia , Cálcio/metabolismo , Movimento Celular , Polaridade Celular , Humanos , Inflamação/imunologia , Integrinas/metabolismo , Camundongos , Miosinas/metabolismo , Neutrófilos/citologia
2.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532004

RESUMO

The vitronectin receptor integrin αVß5 can reside in two distinct adhesion structures - focal adhesions (FAs) and flat clathrin lattices (FCLs). Here, we investigate the mechanism that regulates the subcellular distribution of ß5 in keratinocytes and show that ß5 has approximately 7- and 5-fold higher affinity for the clathrin adaptors ARH (also known as LDLRAP1) and Numb, respectively, than for the talin 1 (TLN1); all proteins that bind to the membrane-proximal NPxY motif of the ß5 cytoplasmic domain. Using mass spectrometry, we identified ß5 interactors, including the Rho GEFs p115Rho-GEF and GEF-H1 (also known as ARHGEF1 and ARHGEF2, respectively), and the serine protein kinase MARK2, depletion of which diminishes the clustering of ß5 in FCLs. Replacement of two serine residues (S759 and S762) in the ß5 cytoplasmic domain with phospho-mimetic glutamate residues causes a shift in the localization of ß5 from FAs into FCLs without affecting the interactions with MARK2, p115Rho-GEF or GEF-H1. Instead, we demonstrate that changes in the actomyosin-based cellular contractility by ectopic expression of activated Rho or disruption of microtubules regulates ß5 localization. Finally, we present evidence that ß5 in either FAs or FCLs functions to promote adhesion to vitronectin, cell spreading, and proliferation.


Assuntos
Clatrina , Receptores de Vitronectina , Adesão Celular/fisiologia , Proliferação de Células , Clatrina/metabolismo , Adesões Focais/metabolismo , Receptores de Vitronectina/metabolismo , Serina/metabolismo
3.
J Cell Sci ; 133(18)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32843574

RESUMO

Integrin function depends on the continuous internalization of integrins and their subsequent endosomal recycling to the plasma membrane to drive adhesion dynamics, cell migration and invasion. Here we assign a pivotal role for Rabgap1 (GAPCenA) in the recycling of endocytosed active ß1 integrins to the plasma membrane. The phosphotyrosine-binding (PTB) domain of Rabgap1 binds to the membrane-proximal NPxY motif in the cytoplasmic domain of ß1 integrin subunits on endosomes. Silencing Rabgap1 in mouse fibroblasts leads to the intracellular accumulation of active ß1 integrins, alters focal adhesion formation, and decreases cell migration and cancer cell invasion. Functionally, Rabgap1 facilitates active ß1 integrin recycling to the plasma membrane through attenuation of Rab11 activity. Taken together, our results identify Rabgap1 as an important factor for conformation-specific integrin trafficking and define the role of Rabgap1 in ß1-integrin-mediated cell migration in mouse fibroblasts and breast cancer cells.


Assuntos
Endossomos , Integrina beta1 , Animais , Adesão Celular , Membrana Celular , Movimento Celular , Proteínas Ativadoras de GTPase , Integrina beta1/genética , Integrinas , Camundongos , Proteínas Associadas aos Microtúbulos
4.
J Cell Sci ; 131(22)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30333137

RESUMO

Integrins are α/ß heterodimers that interconvert between inactive and active states. In the active state the α/ß cytoplasmic domains recruit integrin-activating proteins and separate the transmembrane and cytoplasmic (TMcyto) domains (unclasped TMcyto). Conversely, in the inactive state the α/ß TMcyto domains bind integrin-inactivating proteins, resulting in the association of the TMcyto domains (clasped TMcyto). Here, we report the isolation of integrin cytoplasmic tail interactors using either lipid bicelle-incorporated integrin TMcyto domains (α5, αM, αIIb, ß1, ß2 and ß3 integrin TMcyto) or a clasped, lipid bicelle-incorporated αMß2 TMcyto. Among the proteins found to preferentially bind clasped rather than the isolated αM and ß2 subunits was L-plastin (LCP1, also known as plastin-2), which binds to and maintains the inactive state of αMß2 integrin in vivo and thereby regulates leukocyte adhesion to integrin ligands under flow. Our findings offer a global view on cytoplasmic proteins interacting with different integrins and provide evidence for the existence of conformation-specific integrin interactors.


Assuntos
Adesão Celular/fisiologia , Leucócitos/citologia , Leucócitos/metabolismo , Antígeno de Macrófago 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Conformação Proteica , Células RAW 264.7
5.
Proc Natl Acad Sci U S A ; 114(15): 3933-3938, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348210

RESUMO

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Melanoma/metabolismo , Miosinas/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Perda do Embrião/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Humanos , Melanoma/patologia , Mesoderma/embriologia , Camundongos Mutantes , Miosina Tipo I , Miosinas/química , Miosinas/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosforilação , Gravidez , Domínios Proteicos , Neoplasias Cutâneas/patologia , Tirosina/metabolismo
6.
Blood ; 130(7): 847-858, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28615221

RESUMO

Trafficking of polymorphonuclear neutrophils (PMNs) during inflammation critically depends on the ß2 integrins lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18) and macrophage-1 antigen (CD11b/CD18). Here, we identify coronin 1A (Coro1A) as a novel regulator of ß2 integrins that interacts with the cytoplasmic tail of CD18 and is crucial for induction of PMN adhesion and postadhesion events, including adhesion strengthening, spreading, and migration under flow conditions. Transition of PMN rolling to firm adhesion critically depends on Coro1A by regulating the accumulation of high-affinity LFA-1 in focal zones of adherent cells. Defective integrin affinity regulation in the genetic absence of Coro1A impairs leukocyte adhesion and extravasation in inflamed cremaster muscle venules in comparison with control animals. In a Helicobacter pylori mouse infection model, PMN infiltration into the gastric mucosa is dramatically reduced in Coro1A-/- mice, resulting in an attenuated gastric inflammation. Thus, Coro1A represents an important novel player in integrin biology, with key functions in PMN trafficking during innate immunity.


Assuntos
4-Butirolactona/análogos & derivados , Antígenos CD18/metabolismo , Movimento Celular , Imunidade Inata , Neutrófilos/citologia , Neutrófilos/metabolismo , 4-Butirolactona/metabolismo , Actinas/metabolismo , Animais , Sinalização do Cálcio , Adesão Celular , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Helicobacter pylori/fisiologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/metabolismo , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Reologia
7.
Cell Mol Life Sci ; 75(9): 1671-1685, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29116364

RESUMO

Low density lipoprotein receptor-related protein (LRP) 1 modulates cell adhesion and motility under normal and pathological conditions. Previous studies documented that LRP1 binds several integrin receptors and mediates their trafficking to the cell surface and endocytosis. However, the mechanism by which LRP1 may regulate integrin activation remains unknown. Here we report that LRP1 promotes the activation and subsequent degradation of ß1 integrin and thus supports cell adhesion, spreading, migration and integrin signaling on fibronectin. LRP1 interacts with surface ß1 integrin, binds the integrin activator kindlin2 and stimulates ß1 integrin-kindlin2 complex formation. Specifically, serine 76 in the LRP1 cytoplasmic tail is crucial for the interaction with kindlin2, ß1 integrin activation and cell adhesion. Interestingly, a loss of LRP1 induces the accumulation of several integrin receptors on the cell surface. Following internalization, intracellular trafficking of integrins is driven by LRP1 in a protein kinase C- and class II myosin-dependent manner. Ultimately, LRP1 dictates the fate of endocytosed ß1 integrin by directing it down the pathway of lysosomal and proteasomal degradation. We propose that LRP1 mediates cell adhesion by orchestrating a multi-protein pathway to activate, traffic and degrade integrins. Thus, LRP1 may serve as a focal point in the integrin quality control system to ensure a firm connection to the extracellular matrix.


Assuntos
Integrina beta1/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , Transporte Proteico/genética , Proteólise , Receptores de LDL/genética , Receptores de LDL/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
8.
J Cell Physiol ; 233(1): 259-268, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28233307

RESUMO

Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass.


Assuntos
Movimento Celular , Forma Celular , Fêmur/metabolismo , Osteócitos/metabolismo , Profilinas/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Densidade Óssea , Remodelação Óssea , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Regulação da Expressão Gênica , Genótipo , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteócitos/efeitos dos fármacos , Fenótipo , Cultura Primária de Células , Profilinas/deficiência , Profilinas/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Microtomografia por Raio-X
9.
Development ; 141(7): 1553-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598164

RESUMO

Myelination allows rapid saltatory propagation of action potentials along the axon and is an essential prerequisite for the normal functioning of the nervous system. During peripheral nervous system (PNS) development, myelin-forming Schwann cells (SCs) generate radial lamellipodia to sort and ensheath axons. This process requires controlled cytoskeletal remodeling, and we show that SC lamellipodia formation depends on the function of profilin 1 (Pfn1), an actin-binding protein involved in microfilament polymerization. Pfn1 is inhibited upon phosphorylation by ROCK, a downstream effector of the integrin linked kinase pathway. Thus, a dramatic reduction of radial lamellipodia formation is observed in SCs lacking integrin-linked kinase or treated with the Rho/ROCK activator lysophosphatidic acid. Knocking down Pfn1 expression by lentiviral-mediated shRNA delivery impairs SC lamellipodia formation in vitro, suggesting a direct role for this protein in PNS myelination. Indeed, SC-specific gene ablation of Pfn1 in mice led to profound radial sorting and myelination defects, confirming a central role for this protein in PNS development. Our data identify Pfn1 as a key effector of the integrin linked kinase/Rho/ROCK pathway. This pathway, acting in parallel with integrin ß1/LCK/Rac1 and their effectors critically regulates SC lamellipodia formation, radial sorting and myelination during peripheral nervous system maturation.


Assuntos
Bainha de Mielina/fisiologia , Nervos Periféricos/fisiologia , Sistema Nervoso Periférico/fisiologia , Profilinas/fisiologia , Animais , Transporte Axonal/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Neuropeptídeos/fisiologia , Pseudópodes/genética , Células de Schwann/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
10.
Int J Med Microbiol ; 306(2): 77-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718660

RESUMO

Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to ß1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and ß1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a ß-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with ß1 integrin-depleted leukocytes demonstrated that ß1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, ß1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of ß1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.


Assuntos
Adesinas Bacterianas/fisiologia , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Integrina beta1/fisiologia , Leucócitos/metabolismo , Yersiniose/sangue , Yersinia enterocolitica , Adesinas Bacterianas/genética , Alelos , Animais , Integrina beta1/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos
11.
Blood ; 123(7): 992-1001, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24385538

RESUMO

How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell cycle quiescence of stem cells. The actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Our study provided evidence that pfn1 at least partially acts through the axis of pfn1/Gα13/EGR1 to regulate stem cell retention and metabolism in the bone marrow.


Assuntos
Medula Óssea , Movimento Celular/genética , Glicólise/genética , Células-Tronco Hematopoéticas/fisiologia , Profilinas/fisiologia , Animais , Medula Óssea/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Mobilização de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nicho de Células-Tronco/genética
12.
Cell Microbiol ; 17(8): 1179-204, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25678064

RESUMO

The current paradigm suggests that Yersinia enterocolitica (Ye) adheres to host cells via the outer membrane proteins Yersinia adhesin A (YadA) or invasin (Inv) to facilitate injection of Yops by the type III secretion system. In this process Inv binds directly to ß1 integrins of host cells while YadA may bind indirectly via extracellular matrix proteins to ß1 integrins. Here we challenged this paradigm and investigated the requirements for Yop injection. We demonstrate that Inv- but not YadA-mediated adhesion depends on ß1 integrin binding and activation, and that tight adhesion is a prerequisite for Yop injection. By means of novel transgenic cell lines, shRNA approaches and RGD peptides, we found that YadA, in contrast to Inv, may use a broad host cell receptor repertoire for host cell adhesion. In the absence of ß1 integrins, YadA mediates Yop injection by interaction with αV integrins in cooperation with yet unknown cofactors expressed by epithelial cells, but not fibroblasts. Electron microscopic and flow chamber studies revealed that a defined intimate contact area between Ye and host cells resulting in adhesion forces resisting shear stress is required for Yop injection. Thus, the indirect binding of YadA to a broad extracellular matrix (ECM) binding host cell receptor repertoire of different cell types makes YadA a versatile tool to ensure Yop injection. In conclusion, given the differential expression of the outer membrane proteins Inv and YadA in the course of Ye infection and differential expression of integrins by various host cell populations, the data demonstrate that Ye is flexibly armed to accomplish Yop injection in different host cell types, a central event in its immune evasion strategy.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Toxinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Yersinia enterocolitica/fisiologia , Células Epiteliais/microbiologia , Fibroblastos/metabolismo , Citometria de Fluxo , Integrina alfaV/metabolismo , Integrina beta1/metabolismo , Microscopia Eletrônica , Ligação Proteica , Transporte Proteico
13.
J Cell Sci ; 125(Pt 23): 5636-46, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22976293

RESUMO

Localized production of polyphosphoinositides is critical for their signaling function. To examine the biological relevance of specific pools of phosphatidylinositol 4,5-bisphosphate we compared the consequences of genetically ablating all isoforms of phosphatidylinositol phosphate (PIP) kinase type Iγ (PIPKIγ), encoded by the gene Pip5k1c, versus ablation of a specific splice isoform, PIPKIγ_i2, with respect to three reported PIPKIγ functions. Ablation of PIPKIγ_i2 caused a neuron-specific endocytosis defect similar to that found in PIPKIγ(-/-) mice, while agonist-induced calcium signaling was reduced in PIPKIγ(-/-) cells, but was not affected in the absence of PIPKIγ_i2. A reported contribution of PIPKIγ to epithelial integrity was not evident in PIPKIγ(-/-) mice. Given that mice lacking PIPKIγ_i2 live a normal lifespan whereas PIPKIγ(-/-) mice die shortly after birth, we propose that PIPKIγ-mediated metabotropic calcium signaling may represent an essential function of PIPKIγ, whereas functions specific to the PIPKIγ_i2 splice isoform are not essential for survival.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Cell Sci ; 125(Pt 2): 435-48, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357970

RESUMO

Integrin and receptor tyrosine kinase signalling networks cooperate to regulate various biological functions. The molecular details underlying the integration of both signalling networks remain largely uncharacterized. Here we identify a signalling module composed of a fibronectin-α5ß1-integrin-integrin-linked-kinase (ILK) complex that, in concert with epidermal growth factor (EGF) cues, cooperatively controls the formation of transient actin-based circular dorsal ruffles (DRs) in fibroblasts. DR formation depends on the precise spatial activation of Src at focal adhesions by integrin and EGF receptor signals, in an ILK-dependent manner. In a SILAC-based phosphoproteomics screen we identified the tumour-suppressor Cyld as being required for DR formation induced by α5ß1 integrin and EGF receptor co-signalling. Furthermore, EGF-induced Cyld tyrosine phosphorylation is controlled by integrin-ILK and Src as a prerequisite for DR formation. This study provides evidence for a novel function of integrin-ILK and EGF signalling crosstalk in mediating Cyld tyrosine phosphorylation and fast actin-based cytoskeletal rearrangements.


Assuntos
Receptores ErbB/metabolismo , Integrina alfa5beta1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Estruturas da Membrana Celular/enzimologia , Estruturas da Membrana Celular/fisiologia , Células Cultivadas , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Enzima Desubiquitinante CYLD , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Tirosina/metabolismo
15.
J Biol Chem ; 287(40): 33545-53, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22773831

RESUMO

Bone development is a dynamic process that requires cell motility and morphological adaptation under the control of actin cytoskeleton. This actin cytoskeleton system is regulated by critical modulators including actin-binding proteins. Among them, profilin1 (Pfn1) is a key player to control actin fiber structure, and it is involved in a number of cellular activities such as migration. During the early phase of body development, skeletal stem cells and osteoblastic progenitor cells migrate to form initial rudiments for future skeletons. During this migration, these cells extend their process based on actin cytoskeletal rearrangement to locate themselves in an appropriate location within microenvironment. However, the role of Pfn1 in regulation of mesenchymal progenitor cells (MPCs) during skeletal development is incompletely understood. Here we examined the role of Pfn1 in skeletal development using a genetic ablation of Pfn1 in MPCs by using Prx1-Cre recombinase. We found that Pfn1 deficiency in MPCs caused complete cleft sternum. Notably, Pfn1-deficient mice exhibited an absence of trabecular bone in the marrow space of appendicular long bone. This phenotype is location-specific, as Pfn1 deficiency did not largely affect osteoblasts in cortical bone. Pfn1 deficiency also suppressed longitudinal growth of long bone. In vitro, Pfn1 deficiency induced retardation of osteoblastic cell migration. These observations revealed that Pfn1 is a critical molecule for the skeletal development, and this could be at least in part associated with the retardation of cell migration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Profilinas/fisiologia , Alelos , Animais , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Genótipo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Osteoblastos/citologia , Osteogênese , Profilinas/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Transfecção , Microtomografia por Raio-X/métodos
16.
EMBO J ; 28(8): 1157-69, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19262563

RESUMO

Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1-mediated actin filament elongation. Neither an actin nor a poly-proline binding-deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis.


Assuntos
Condrócitos , Citocinese/fisiologia , Profilinas/metabolismo , Actinas/metabolismo , Animais , Osso e Ossos/anormalidades , Osso e Ossos/fisiologia , Cartilagem/anormalidades , Cartilagem/fisiologia , Condrócitos/citologia , Condrócitos/fisiologia , Marcação de Genes , Camundongos , Camundongos Transgênicos , Miosinas/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Profilinas/genética
17.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34996844

RESUMO

Integrins require an activation step before ligand binding and signaling that is mediated by talin and kindlin binding to the ß integrin cytosolic domain (ß-tail). Conflicting reports exist about the contribution of phosphorylation of a conserved threonine motif in the ß1-tail (ß1-pT788/pT789) to integrin activation. We show that widely used and commercially available antibodies against ß1-pT788/pT789 integrin do not detect specific ß1-pT788/pT789 integrin signals in immunoblots of several human and mouse cell lysates but bind bi-phosphorylated threonine residues in numerous proteins, which were identified by mass spectrometry experiments. Furthermore, we found that fibroblasts and epithelial cells expressing the phospho-mimicking ß1-TT788/789DD integrin failed to activate ß1 integrins and displayed reduced integrin ligand binding, adhesion initiation and cell spreading. These cellular defects are specifically caused by the inability of kindlin to bind ß1-tail polypeptides carrying a phosphorylated threonine motif or phospho-mimicking TT788/789DD substitutions. Our findings indicate that the double-threonine motif in ß1-class integrins is not a major phosphorylation site but if phosphorylated would curb integrin function.


Assuntos
Integrina beta1 , Treonina , Motivos de Aminoácidos/fisiologia , Animais , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Integrina beta1/química , Integrina beta1/metabolismo , Camundongos , Fosforilação , Treonina/química , Treonina/metabolismo
18.
Curr Biol ; 32(14): 3033-3047.e9, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35688156

RESUMO

Physiological and pathological cardiac stress induced by exercise and hypertension, respectively, increase the hemodynamic load for the heart and trigger specific hypertrophic signals in cardiomyocytes leading to adaptive or maladaptive cardiac hypertrophy responses involving a mechanosensitive remodeling of the contractile cytoskeleton. Integrins sense load and have been implicated in cardiac hypertrophy, but how they discriminate between the two types of cardiac stress and translate mechanical loads into specific cytoskeletal signaling pathways is not clear. Here, we report that the focal adhesion protein ß-parvin is highly expressed in cardiomyocytes and facilitates the formation of cell protrusions, the serial assembly of newly synthesized sarcomeres, and the hypertrophic growth of neonatal rat ventricular cardiomyocytes (NRVCs) in vitro. In addition, physiological mechanical loading of NRVCs by either the application of cyclic, uni-axial stretch, or culture on physiologically stiff substrates promotes NRVC elongation in a ß-parvin-dependent manner, which is achieved by binding of ß-parvin to α/ß-PIX, which in turn activates Rac1. Importantly, loss-of-function studies in mice also revealed that ß-parvin is essential for the exercise-induced cardiac hypertrophy response in vivo. Our results identify ß-parvin as a novel mechano-responsive signaling hub in hypertrophic cardiomyocytes that drives cell elongation in response to physiological mechanical loads.


Assuntos
Adesões Focais , Miócitos Cardíacos , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Integrinas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Sarcômeros/patologia
19.
Front Cell Dev Biol ; 10: 836797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309920

RESUMO

Integrins and discoidin domain receptors (DDRs) 1 and 2 promote cell adhesion and migration on both fibrillar and non fibrillar collagens. Collagen I contains DDR and integrin selective binding motifs; however, the relative contribution of these two receptors in regulating cell migration is unclear. DDR1 has five isoforms (DDR1a-e), with most cells expressing the DDR1a and DDR1b isoforms. We show that human embryonic kidney 293 cells expressing DDR1b migrate more than DDR1a expressing cells on DDR selective substrata as well as on collagen I in vitro. In addition, DDR1b expressing cells show increased lung colonization after tail vein injection in nude mice. DDR1a and DDR1b differ from each other by an extra 37 amino acids in the DDR1b cytoplasmic domain. Interestingly, these 37 amino acids contain an NPxY motif which is a central control module within the cytoplasmic domain of ß integrins and acts by binding scaffold proteins, including talin. Using purified recombinant DDR1 cytoplasmic tail proteins, we show that DDR1b directly binds talin with higher affinity than DDR1a. In cells, DDR1b, but not DDR1a, colocalizes with talin and integrin ß1 to focal adhesions and enhances integrin ß1-mediated cell migration. Moreover, we show that DDR1b promotes cell migration by enhancing Rac1 activation. Mechanistically DDR1b interacts with the GTPase-activating protein (GAP) Breakpoint cluster region protein (BCR) thus reducing its GAP activity and enhancing Rac activation. Our study identifies DDR1b as a major driver of cell migration and talin and BCR as key players in the interplay between integrins and DDR1b in regulating cell migration.

20.
Nat Cell Biol ; 6(1): 38-44, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14688794

RESUMO

Fibroblast growth factors (FGFs) signal through high-affinity tyrosine kinase receptors to regulate a diverse range of cellular processes, including cell growth, differentiation and migration, as well as cell death. Here we identify XFLRT3, a member of a leucine-rich-repeat transmembrane protein family, as a novel modulator of FGF signalling. XFLRT3 is co-expressed with FGFs, and its expression is both induced after activation and downregulated after inhibition of FGF signalling. In gain- and loss-of function experiments, FLRT3 and FLRT2 phenocopy FGF signalling in Xenopus laevis. XFLRT3 signalling results in phosphorylation of ERK and is blocked by MAPK phosphatase 1, but not by expression of a dominant-negative phosphatidyl inositol 3-OH kinase (PI(3)K) mutant. XFLRT3 interacts with FGF receptors (FGFRs) in co-immunoprecipitation experiments in vitro and in bioluminescence resonance energy transfer assays in vivo. The results indicate that XFLRT3 is a transmembrane modulator of FGF-MAP kinase signalling in vertebrates.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Sequência de Bases/genética , Diferenciação Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , DNA Complementar/análise , DNA Complementar/genética , Regulação para Baixo/genética , Fosfatase 1 de Especificidade Dupla , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Indução Embrionária/genética , Retroalimentação Fisiológica/genética , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Fosfatase 1 , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/farmacologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA