Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(2): e1011047, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730465

RESUMO

The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards. Uncontrolled degradation of peptidoglycan poses risks to the chlamydial cell, as essential building blocks might get lost or trigger host immune response upon release into the host cell. Here, we provide evidence that a primordial enzyme class prevents energy intensive de novo synthesis and uncontrolled release of immunogenic peptidoglycan subunits in Chlamydia trachomatis. Our data indicate that the homolog of a Bacillus NlpC/P60 protein is widely conserved among Chlamydiales. We show that the enzyme is tailored to hydrolyze peptidoglycan-derived peptides, does not interfere with peptidoglycan precursor biosynthesis, and is targeted by cysteine protease inhibitors in vitro and in cell culture. The peptidase plays a key role in the underexplored process of chlamydial peptidoglycan recycling. Our study suggests that chlamydiae orchestrate a closed-loop system of peptidoglycan ring biosynthesis, remodeling, and recycling to support cell division and maintain long-term residence inside the host. Operating at the intersection of energy recovery, cell division and immune evasion, the peptidoglycan recycling NlpC/P60 peptidase could be a promising target for the development of drugs that combine features of classical antibiotics and anti-virulence drugs.


Assuntos
Chlamydia trachomatis , Peptidoglicano , Chlamydia trachomatis/metabolismo , Peptidoglicano/metabolismo , Evasão da Resposta Imune , Proteínas de Bactérias/metabolismo , Divisão Celular , Parede Celular/metabolismo , Peptídeo Hidrolases/metabolismo
2.
Curr Top Microbiol Immunol ; 412: 1-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27726004

RESUMO

The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.


Assuntos
Parede Celular/química , Chlamydia/citologia , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/imunologia , Parede Celular/metabolismo , Chlamydia/efeitos dos fármacos , Chlamydia/imunologia , Chlamydia/patogenicidade , Humanos
3.
PLoS One ; 10(4): e0122110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849314

RESUMO

Heterologous overexpression of foreign proteins in Escherichia coli often leads to insoluble aggregates of misfolded inactive proteins, so-called inclusion bodies. To solve this problem use of chaperones or in vitro refolding procedures are the means of choice. These methods are time consuming and cost intensive, due to additional purification steps to get rid of the chaperons or the process of refolding itself. We describe an easy to use lab-scale method to avoid formation of inclusion bodies. The method systematically combines use of co-solvents, usually applied for in vitro stabilization of biologicals in biopharmaceutical formulation, and periplasmic expression and can be completed in one week using standard equipment in any life science laboratory. Demonstrating the unique power of our method, we overproduced and purified for the first time an active chlamydial penicillin-binding protein, demonstrated its function as penicillin sensitive DD-carboxypeptidase and took a major leap towards understanding the "chlamydial anomaly."


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia/metabolismo , Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Solventes/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Betaína/química , Domínio Catalítico , Clonagem Molecular , Mutagênese Sítio-Dirigida , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
4.
Artigo em Inglês | MEDLINE | ID: mdl-24616885

RESUMO

For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.


Assuntos
Alanina Racemase/metabolismo , Alanina/metabolismo , Chlamydophila pneumoniae/enzimologia , Glicina Hidroximetiltransferase/metabolismo , Alanina Racemase/genética , Chlamydophila pneumoniae/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Nat Commun ; 5: 4201, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24953137

RESUMO

Intracellular Chlamydiaceae do not need to resist osmotic challenges and a functional cell wall was not detected in these pathogens. Nevertheless, a recent study revealed evidence for circular peptidoglycan-like structures in Chlamydiaceae and penicillin inhibits cytokinesis, a phenomenon known as the chlamydial anomaly. Here, by characterizing a cell wall precursor-processing enzyme, we provide insights into the mechanisms underlying this mystery. We show that AmiA from Chlamydia pneumoniae separates daughter cells in an Escherichia coli amidase mutant. Contrary to homologues from free-living bacteria, chlamydial AmiA uses lipid II as a substrate and has dual activity, acting as an amidase and a carboxypeptidase. The latter function is penicillin sensitive and assigned to a penicillin-binding protein motif. Consistent with the lack of a regulatory domain in AmiA, chlamydial CPn0902, annotated as NlpD, is a carboxypeptidase, rather than an amidase activator, which is the case for E. coli NlpD. Functional conservation of AmiA implicates a role in cytokinesis and host response modulation.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Chlamydophila pneumoniae/enzimologia , Penicilinas/farmacologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carboxipeptidases/química , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Parede Celular/metabolismo , Chlamydophila pneumoniae/citologia , Chlamydophila pneumoniae/efeitos dos fármacos , Chlamydophila pneumoniae/genética , Citocinese , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA