Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(10): 6100-6107, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445779

RESUMO

BACKGROUND: Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear. RESULTS: This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield. Random forest models and mixed effects meta-analyses revealed that plant types (i.e., cereals, vegetables, legumes, and forages) primarily influenced Se biofortification, with Se fertilization rates being the next significant factor. The random forest model, which included variables like plant types, Se fertilization rates, methods and types of Se application, initial soil conditions (including Se content, organic carbon content, and pH), soil types, mean annual precipitation, and temperature, explained 82.14% of the variation in Se content and 48.42% of the yield variation in agricultural products. For the same agricultural products, the increase in Se content decreased with higher rates of Se fertilization. The increase in Se content in their edible parts will be negligible for cereals, forages, legumes, and vegetable crops, when Se fertilization rates were 164, 103, 144, and 147 g Se ha-1, respectively. Conversely, while low Se fertilization rates enhanced yields, high rates led to a yield reduction, particularly in cereals. CONCLUSION: Our findings highlight the need for balanced and precise Se fertilization strategies to optimize Se biofortification benefits and minimize the risk of yield reduction. © 2024 Society of Chemical Industry.


Assuntos
Biofortificação , Produtos Agrícolas , Fertilizantes , Selênio , Solo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Grão Comestível/química , Grão Comestível/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Fertilizantes/análise , Selênio/análise , Selênio/metabolismo , Solo/química , Verduras/química , Verduras/metabolismo , Verduras/crescimento & desenvolvimento
2.
Ecotoxicol Environ Saf ; 207: 111544, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254403

RESUMO

Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.


Assuntos
Selênio/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Biomassa , Grão Comestível/metabolismo , Folhas de Planta/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Compostos de Selênio/metabolismo
3.
Appl Microbiol Biotechnol ; 104(4): 1721-1735, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31915899

RESUMO

The RNA chaperone, Hfq, is a global post-transcriptional regulator that plays an important role in regulating pleiotropic functions, such as cell growth and motility, stress tolerance, and virulence to host, in many Gram-negative bacteria. This study examined the functional roles of Hfq in Rahnella aquatilis HX2, a plant beneficial, selenium nanoparticles (SeNPs)-producing soil bacterium. A mutant HX2∆hfq with an in-frame deletion within the hfq gene in R. aquatilis HX2 was constructed and tested for various phenotypic features. Bacterial growth, motility, selenite reduction, and SeNPs production were compared between the mutant, the wild-type, and the complementation strain. The hfq gene deletion delayed the growth of strain HX2, with a lower bacterial population during the stationary phase, and significantly impaired the swimming motility of the bacterium, showing a smaller motility ring on the plate. The hfq mutation also dramatically declined microbial-induced reduction of selenite and SeNPs production in HX2, which was independent of cell growth. The introduction of a trans-expressed hfq gene into HX2∆hfq for complementation completely restored impacted phenotypes. In addition, reverse transcription real-time quantitative PCR (RT-qPCR) analysis revealed that the expression of ten genes involved in bacterial growth and survival, motility and chemotaxis, and selenite or seleno-compound metabolism were influenced by Hfq loss-of-function by at least two-fold. Six genes including two involved in SeNPs production were positively regulated by hfq, while other four genes were negatively regulated. Homolog search suggested that the rprA gene might encode a small RNA regulated by Hfq in R. aquatilis HX2. Overall, the present study provides novel information about the function of Hfq and the regulation of bacterial biosynthesis of SeNPs.


Assuntos
Fator Proteico 1 do Hospedeiro/genética , Nanopartículas/química , Rahnella/genética , Rahnella/fisiologia , Selênio/química , Deleção de Genes , Fator Proteico 1 do Hospedeiro/metabolismo , Chaperonas Moleculares/genética , Movimento
4.
Bull Environ Contam Toxicol ; 105(5): 798-805, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32909074

RESUMO

In 1963, selenosis occurred in Yutangba Village, Enshi City, China. Subsequently, local residents migrated to a new area of Yutangba to avoid high selenium (Se) exposure. In this study, 19 soil samples, 43 food samples, 60 hair samples and 58 plasma samples from local residents were randomly collected in New Yutangba Village. The mean total Se concentrations in cultivated soil samples were 1753.6 ± 742.8 µg/kg (n = 14). The estimated daily Se intake in New Yutangba Village decreased to 63.2 ± 39.8 µg/day, slightly higher than the recommended dietary Se intake for adults in China (60 µg/day). The mean Se concentrations in hair and plasma samples were 549.7 ± 165.2 µg/kg (n = 60) and 98.4 ± 32.1 µg/L (n = 58), respectively. The result indicated that appropriate activities, such as relocation, consuming a mixture of local foods and market foods containing low Se concentration, could effectively reduce the risk of high Se exposure.


Assuntos
Exposição Dietética/análise , Monitoramento Ambiental/métodos , Cabelo/química , Selênio/análise , Poluentes do Solo/análise , Solo/química , Adulto , China , Humanos , Distribuição Aleatória , Selênio/sangue , Poluentes do Solo/sangue
5.
Ecotoxicol Environ Saf ; 185: 109675, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31536913

RESUMO

Due to the two-dimensional effect of selenium (Se) to health, which form of Se is most effective for increasing the bioaccessible Se content in P. ostreatus and whether these products have potential health risks are worth considering. Three Se supplements were applied at different application rates into substrates for cultivating P. ostreatus. The total content and speciation of Se in P. ostreatus fruit bodies were analyzed, and the bioaccessibility of Se was determined via an in vitro physiologically based extraction test (PBET). Results showed that P. ostreatus had the highest utilization efficiency with selenite, followed by Se yeast and selenate. Organic Se (46%-90%) was the major Se speciation in P. ostreatus regardless applied Se species. Although the Se bioaccessibility of the gastrointestinal digestion of P. ostreatus was high (70%-92%), the estimated daily intake and target hazard quotient values are all within the safe ranges. Se-enriched P. ostreatus can be safely used as a dietary source of Se for increasing Se intake.


Assuntos
Carpóforos/química , Pleurotus/química , Ácido Selênico/análise , Ácido Selenioso/análise , Bioacumulação , Digestão , Carpóforos/metabolismo , Humanos , Pleurotus/metabolismo , Medição de Risco , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo
6.
J Sci Food Agric ; 99(5): 2215-2225, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30318733

RESUMO

BACKGROUND: Sustainable agricultural practices are needed to face current threats to agricultural production in areas where water scarcity, recurrent droughts, and decreased soil quality are endangering productivity and food security. Deficit irrigation (DI) practices consist of reducing irrigation applied at levels below full crop evapotranspiration losses throughout the growing season or at specific phenological stages of the specific crop. The goal of our study was to evaluate the physiological response of table grapes subjected to DI relative to fruit quality. DI treatments were developed as a percentage of the grower practice (evapotranspiration losses are fully replenished by irrigation) on commercial fields of table grapes in central California. DI practices began in 2011 and were continued throughout 2015. Grape berries were analyzed for mineral elements, berry weight, diameter and firmness, carbon and nitrogen content, pH, soluble solids, and total phenolic compounds. RESULTS: In this study, DI practices in all treatments did not significantly increase or decrease nutraceutical compounds in grape berry and measured physiological responses to DI were mixed, with significant variation between years. CONCLUSIONS: This study showed that DI practices could be safely used in dry areas for at least four years without affecting the nutritional quality of grape berry in 'Crimson seedless' and 'Sugraone'. © 2018 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Vitis/química , Irrigação Agrícola , Antocianinas/análise , Antocianinas/metabolismo , California , Secas , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Concentração de Íons de Hidrogênio , Valor Nutritivo , Fenóis/análise , Fenóis/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Água/metabolismo
7.
Appl Microbiol Biotechnol ; 102(14): 6191-6205, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29806064

RESUMO

Rahnella aquatilis HX2 (proteobacteria) shows tolerance to selenium (Se). The minimum inhibitory concentrations of selenomethionine (Se-Met), selenite [Se (IV)], and selenate [Se (VI)] to HX2 are 4.0, 85.0, and 590.0 mM, respectively. HX2 shows the ability to reduce Se (IV) and Se (VI) to elemental Se nanoparticles (SeNPs). The maximum production of SeNPs by HX2 strain is 1.99 and 3.85 mM in Luria-Bertani (LB) broth with 5 mM Se (IV) and 10 mM Se (VI), respectively. The morphology of SeNPs and cells were observed by transmission electron microscope, environmental scanning electron microscope, and selected area electric diffraction detector. Spherical SeNPs with amorphous structure were found in the cytoplasm, membrane, and exterior of cells. Morphological variations of the cell membrane were further confirmed by the release of cellular materials absorbed at 260 nm. Flagella were inhibited and cell sizes were 1.8-, 1.6-, and 1.2-fold increases with the Se-Met, Se (VI), and Se (IV) treatments, respectively. The real-time quantitative PCR analysis indicated that some of the genes controlling Se metabolism or cell morphology, including cysA, cysP, rodA, ZntA, and ada, were significantly upregulated, while grxA, fliO, flgE, and fliC genes were significantly downregulated in those Se treatments. This study provided novel valuable information concerning the cell morphology along with biological synthesis process of SeNPs in R. aquatilis and demonstrated that the strain HX2 could be applied in both biosynthesis of SeNPs and in management of environmental Se pollution.


Assuntos
Nanopartículas , Rahnella/efeitos dos fármacos , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Selênio/química , Selenometionina/farmacologia , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Rahnella/citologia , Rahnella/crescimento & desenvolvimento
8.
Int J Phytoremediation ; 20(2): 129-137, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28678529

RESUMO

Poplar trees (Populus spp.) are often used in bioremediation strategies because of their ability to phytoextract potential toxic ions, e.g., selenium (Se) from poor quality soils. Soil microorganisms may play a vital role in sustaining health of soil and/or tolerance of these trees grown in poor quality soils by contributing to nutrient cycling, soil structure, overall soil quality, and plant survival. The effect of naturally occurring salts boron (B) and Se on soil microbial community composition associated with poplar trees is not known for bioremediation strategies. In this study, three Populus clones 13-366, 345-1, and 347-14 were grown in spring 2006 under highly saline, B, and Se clay-like soils in the west side of the San Joaquin Valley (SJV) of CA, as well as in non-saline sandy loam soils located in the east side of the SJV. After 7 years of growing in the respective soils of different qualities, soil samples were collected from poplar clones grown in saline and non-saline soils to examine and compare soil quality effects on soil microbial community biomass and composition. The phospholipid fatty acid (PLFA) analysis was used to characterize microbial community composition in soils from trees grown at both locations. This study showed that microbial biomass and the amount and proportion of arbuscular mycorrhizal fungal (AMF) community were lower in all three poplar clones grown in saline soil compared to non-saline soil. Amounts of Gram + bacterial and actinomycetes PLFAs were significantly lower in poplar clone 13-366 grown in saline soil compared to non-saline soil; however, they did not differ significantly in poplar clones 347-14 and 345-1. Additionally, amounts of saprophytic fungal, Gram - bacterial and eukaryotic PLFA remained similar at saline and non-saline sites under poplar clones 347-14, 345-1, and 13-366. Therefore, this study suggested that salinity and B do have an impact on microbial biomass and AMF; however, these poplar clones still recycled sufficient amount of nutrients to support and protect saprophytic fungal and bacterial communities from the effects of poor quality soils.


Assuntos
Biodegradação Ambiental , Populus , Selênio , Poluentes do Solo , Biomassa , Boro , Ácidos Graxos , Microbiota , Micorrizas , Fosfolipídeos , Salinidade , Selênio/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Árvores
9.
Int J Phytoremediation ; 19(10): 915-924, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28318297

RESUMO

Ferric-Carbon Micro-Electrolysis (Fe/C-M/E) material had been widely used for the pretreatment of wastewater. Therefore, we hypothesized that Fe/C-M/E material could enhance the treatment of domestic sewage when it was integrated into constructed wetlands (CWs). In this study, CWs integrated with Fe/C-M/E material were developed. Druing the experiment of effect of vegetation on the performance of CWs, percentages of NH4+-N, NO3--N, total nitrogen (TN), and Chemical Oxygen Demand (COD) removed in polyculture (W1) were up to 91.8%, 97.0%, 92.3%, and 85.4%, respectively, which were much higher than those in Lythrum salicaria monoculture (W2) and Canna indica monoculture (W3). In the experiment of temperature influences on the removal efficiency of CWs, temperature substantially influenced the performance of CWs. For example, NO3--N removal percentages of W1, W2, and W3 at high temperature (25.5°C and 19.8°C) were relatively stable and greater than 85.4%. At 8.9°C, however, a sharp decline of NO3--N removal percentage was observed in all CWs. Temperature also influenced the Chemical Oxygen Demand (COD) removal and soil microbial activity and biomass. Overall, the polyculture (Lythrum salicaria +Canna indica) showed the best performance during most of the operating time, at an average temperature ≥ 19.8°C, due to the functional complementarity between vegetation. All the CWs consistently achieved high removal efficiency (above 96%) for TP in all experiments, irrespective of vegetation types, phosphorous loadings, and temperatures. In conclusion, polyculture was an attractive solution for the treatment of domestic sewage during most of the operating time (average temperature ≥ 19.8°C). Furthermore, CWs with Fe/C-M/E material were ideally suitable for domestic sewage treatment, especially for TP removal.


Assuntos
Biodegradação Ambiental , Carbono , Esgotos , Temperatura , Eletrólise , Nitrogênio , Eliminação de Resíduos Líquidos , Áreas Alagadas
10.
Sensors (Basel) ; 17(10)2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29036925

RESUMO

Though more costly than petroleum-based fuels and a minor component of overall military fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost occurs when grown on marginally productive saline-sodic soils plentiful in California's San Joaquin Valley (SJV). The objective is to evaluate the feasibility of oilseed production on marginal soils in the SJV to support a 115 ML yr-1 biofuel conversion facility. The feasibility evaluation involves: (1) development of an Ida Gold mustard oilseed yield model for marginal soils; (2) identification of marginally productive soils; (3) development of a spatial database of edaphic factors influencing oilseed yield and (4) performance of Monte Carlo simulations showing potential biofuel production on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity, leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285), where Q is biofuel production in ML yr-1. The shifted gamma cumulative density function indicates a 0.15-0.17 probability of meeting the target biofuel-production level of 115 ML yr-1, making adequate biofuel production unlikely.

11.
J Environ Manage ; 157: 96-102, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25897503

RESUMO

Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC âˆ¼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC âˆ¼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil.


Assuntos
Boro/metabolismo , Salsola/metabolismo , Selênio/metabolismo , Poluentes do Solo/metabolismo , Agricultura , California , Humanos , Plantas Tolerantes a Sal/metabolismo
12.
Curr Microbiol ; 69(2): 192-201, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24682262

RESUMO

Some organic and inorganic salts could inhibit the growth of many pathogens. Selenium (Se), as an essential micronutrient, was effective in improving the plant resistance and antioxidant capacity at a low concentration. Penicillium expansum is one of the most important postharvest fungal pathogens, which can cause blue mold rot in various fruits and vegetables. In this study, the inhibitory effect of Se against P. expansum was evaluated. The result showed that Se strongly inhibited spore germination, germ tube elongation, and mycelial spread of P. expansum in the culture medium. The inhibitory effect was positively related to the concentration of Se used. Fluorescence microscopy observation of P. expansum conidia stained with propidium iodide (PI) indicated that the membrane integrity decreased to 37 % after the conidia were treated with Se (20 mg/l) for 9 h. With the use of an oxidant-sensitive probe 2,7-dichlorofluorescin (DCHF-DA), we found that Se at 15 mg/l could induce the generation of intracellular reactive oxygen species (ROS). Furthermore, methane dicarboxylic aldehyde (MDA) content, hydrogen peroxide (H2O2), and superoxide anion (O2 (-)) production rate in P. expansum spores exposed to Se increased markedly. Compared with the control, the activities of superoxide dismutase (SOD) and the content of glutathione (GSH) were reduced, confirming that damage of Se to cellular oxygen-eliminating system is the main reason. These results suggest that Se might serve as a potential alternative to synthetic fungicides for the control of the postharvest disease of fruit and vegetables caused by P. expansum.


Assuntos
Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Selênio/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Microscopia de Fluorescência , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Penicillium/citologia , Penicillium/fisiologia , Propídio/análise , Espécies Reativas de Oxigênio/análise , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Coloração e Rotulagem
13.
Front Plant Sci ; 15: 1327649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645396

RESUMO

Arsenic (As) accumulation in plants is a global concern. Although the application of arbuscular mycorrhizal fungi (AMF) has been suggested as a potential solution to decrease As concentration in plants, there is currently a gap in a comprehensive, quantitative assessment of the abiotic and biotic factors influencing As accumulation. A meta-analysis was performed to quantitatively investigate the findings of 76 publications on the impacts of AMF, plant properties, and soil on As accumulation in plants. Results showed a significant dose-dependent As reduction with higher mycorrhizal infection rates, leading to a 19.3% decrease in As concentration. AMF reduced As(V) by 19.4% but increased dimethylarsenic acid (DMA) by 50.8%. AMF significantly decreased grain As concentration by 34.1%. AMF also improved plant P concentration and dry biomass by 33.0% and 62.0%, respectively. The most significant reducing effects of As on AMF properties were seen in single inoculation and experiments with intermediate durations. Additionally, the benefits of AMF were significantly enhanced when soil texture, soil organic carbon (SOC), pH level, Olsen-P, and DTPA-As were sandy soil, 0.8%-1.5%, ≥7.5, ≥9.1 mg/kg, and 30-60 mg/kg, respectively. AMF increased easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP) by 23.0% and 28.0%, respectively. Overall, the investigated factors had significant implications in developing AMF-based methods for alleviating the negative effects of As stress on plants.

14.
Environ Sci Technol ; 47(10): 5057-65, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23621086

RESUMO

An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested.


Assuntos
Agricultura , Aquicultura , Biodegradação Ambiental , Crustáceos , Ecossistema , Selênio/metabolismo , Águas Residuárias , Animais , Biotransformação
15.
Front Plant Sci ; 14: 1199721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409302

RESUMO

Mercury (Hg) is a highly toxic heavy metal entering the human body through the food chain after absorption by plant. Exogenous selenium (Se) has been suggested as a potential solution to reduce Hg concentration in plants. However, the literature does not provide a consistent picture of the performance of Se on the accumulation of Hg in plant. To obtain a more conclusive answer on the interactions of Se and Hg, 1,193 data records were collected from 38 publications for this meta-analysis, and we tested the effects of different factors on Hg accumulation by meta-subgroup analysis and meta-regression model. The results highlighted a significant dose-dependent effect of Se/Hg molar ratio on the reduction of Hg concentration in plants, and the optimum condition for inhibiting Hg accumulation in plants is at a Se/Hg ratio of 1-3. Exogenous Se significantly reduced Hg concentrations in the overall plant species, rice grains, and non-rice species by 24.22%, 25.26%, and 28.04%, respectively. Both Se(IV) and Se(VI) significantly reduced Hg accumulation in plants, but Se(VI) had a stronger inhibiting effect than Se(IV). Se significantly decreased the BAFGrain in rice, which indicated that other physiological processes in rice may be involved in restricting uptake from soil to rice grain. Therefore, Se can effectively reduce Hg accumulation in rice grain, which provides a strategy for effectively alleviating the transfer of Hg to the human body through the food chain.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36900888

RESUMO

Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH3), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (H2S), etc., which will aggravate global warming, degrade air quality and even threaten human health. However, there is a lack of systematic understanding of factors affecting the emission of these gases in CWs. In this study, we applied meta-analysis to quantitatively review the main influencing factors of GHG emission from CWs; meanwhile, the emissions of NH3, VOCs, and H2S were qualitatively assessed. Meta-analysis indicates that horizontal subsurface flow (HSSF) CWs emit less CH4 and N2O than free water surface flow (FWS) CWs. The addition of biochar can mitigate N2O emission compared to gravel-based CWs but has the risk of increasing CH4 emission. Polyculture CWs stimulate CH4 emission but pose no influence on N2O emission compared to monoculture CWs. The influent wastewater characteristics (e.g., C/N ratio, salinity) and environmental conditions (e.g., temperature) can also impact GHG emission. The NH3 volatilization from CWs is positively related to the influent nitrogen concentration and pH value. High plant species richness tends to reduce NH3 volatilization and plant composition showed greater effects than species richness. Though VOCs and H2S emissions from CWs do not always occur, it should be a concern when using CWs to treat wastewater containing hydrocarbon and acid. This study provides solid references for simultaneously achieving pollutant removal and reducing gaseous emission from CWs, which avoids the transformation of water pollution into air contamination.


Assuntos
Gases , Gases de Efeito Estufa , Humanos , Gases/análise , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Águas Residuárias , Áreas Alagadas
17.
Biol Trace Elem Res ; 201(10): 4951-4960, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36600168

RESUMO

Selenium (Se) agronomic biofortification of plants is effective for alleviating Se deficiencies in human and livestock populations. Less is known about how higher selenate amendment rates, or how foliar compared with granular selenate amendments affect forage Se concentrations. Therefore, we compared the effects of a higher sodium selenate foliar amendment rate (900 vs. 90 g Se ha-1), and two selenate amendment methods (liquid foliar sodium selenate vs. granular slow-release Selcote Ultra® at 0, 45, and 90 g Se ha-1) on Se concentrations and Se species in forages across Oregon. The 10 × amendment rate (900 g Se ha-1) resulted in 6.4 × higher forage Se concentrations in the first cut (49.19 vs. 7.61 mg Se kg-1 plant DM, respectively) compared with the 90 g ha-1 amendment rate, indicating that forages can tolerate higher selenate amendment rates. Most Se was incorporated as SeMet (75%) in the harvested portion of the forage (37 mg Se kg-1 forage DM of the first cut) and only a limited amount was stored in the selenate reserve pool in the leaves (~ 5 mg Se kg-1 forage DM). Higher application rates of selenate amendment increased forage Se concentrations in first and second cuts, but carry over in subsequent years was negligible. Application of foliar selenate vs. granular Selcote Ultra® amendments, between 0 and 90 g Se ha-1, both resulted in a linear, dose-dependent increase in forage Se concentration. Amendments differed in their Se incorporation pattern (Se%), in that, first cut forage Se concentrations were higher with foliar selenate amendment and second, third, and residual (following spring) cut forage Se concentrations were higher with granular Selcote Ultra® amendment. Given the linear relationship between forage Se concentrations and whole-blood Se concentrations in livestock consuming Se-biofortified forage, we conclude that targeted grazing or other forage feeding strategies will allow producers to adapt to either selenate-amendment form.


Assuntos
Selênio , Humanos , Selênio/metabolismo , Ácido Selênico , Biofortificação/métodos , Agricultura
18.
Front Plant Sci ; 14: 1121605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063195

RESUMO

Introduction: Low selenium (Se) concentrations in soils and plants pose a health risk for ruminants consuming locally-grown forages. Previous studies have shown that Se concentrations in forages can be increased using soil-applied selenate amendments. However, the effects of foliar selenate amendments applied with traditional nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizers on forage yields, and nutrient contents, and agronomic efficiencies are unknown. Methods: Using a split plot design, we determined the effects of springtime sodium selenate foliar amendment rates (0, 45, and 90 g Se ha-1) and NPKS application (none, NPK for grasses/PK for alfalfa, and NPKS/PKS fertilization at amounts adapted to meet local forage and soil requirements) on forage growth and N, S, and Se concentrations, yields, and agronomic efficiencies. This 2-year study was conducted across Oregon on four representative forage fields: orchardgrass (Dactylis glomerata L.) in Terrebonne (central Oregon), grass-clover mixture in Roseburg (southwestern Oregon), and both grass mixture and alfalfa (Medicago sativa L.) fields in Union (eastern Oregon). Results: Grasses grew poorly and were low in N content without NPK fertilization. Fertilization with NPK/PK promoted forage growth, increased forage N concentrations, and had to be co-applied with S when plant available S was low. Without Se amendment, forage Se concentrations were low and further decreased with NPKS/PKS fertilization. Selenate amendment linearly increased forage Se concentration without adversely affecting forage yields, N and S concentrations, or N and S agronomic efficiencies. Discussion: Importantly, S fertilization did not interfere with Se uptake in Se amended plots. In conclusion, co-application of NPKS/PKS fertilizers and foliar sodium selenate in springtime is an effective strategy to increase forage total Se concentrations, while maintaining optimal growth and quality of Oregon forages.

19.
Foods ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36981141

RESUMO

Since soybean is widely cultivated around the world and has a high protein content, it is a great nutritional vehicle for increasing the dietary uptake of selenium (Se). Several studies have evaluated biofortification with Se through fertilizer application in several crops. However, it is not clear how each method and source affect the total Se content or Se species in soybean grains. This work aimed to assess the total Se content and Se speciation in Se-enriched soybean grains produced under different Se application methods in the field. The treatments consisted of Se application (soil or foliar), using organic or inorganic Se sources at 10 g ha-1 or 80 g ha-1, in two genotypes. The results showed that all treatments with inorganic Se (soil and foliar) increased the Se content in grains compared with the control. More than 80% of the total Se in grains was present as selenomethionine (SeMet), and the speciation was affected by the Se source and the method of application. The treatments using inorganic Se, applied via soil or foliar, produced the highest content of Se as SeMet in soybean grains. Finally, we propose that the preservation of the Se species in products derived from soybean grains be evaluated as the following step.

20.
Anal Chem ; 84(14): 6024-30, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22747111

RESUMO

Brassica plants accumulate selenium (Se) especially in seeds when grown in soils laden with Se. We report a chemical analysis of Se in Brassica seeds (canola, Indian mustard, and white mustard) and in their hydraulically pressed seed meals, which are used as a Se supplement in livestock animal feeds. Complementary techniques were used to measure total Se concentrations, to map the localization of Se, and to quantify different Se forms. Seeds and hydraulically pressed seed meals contained an average of 1.8 and 2.0 µg Se g(-1) DW, respectively. Selenium was primarily located in cotyledons and roots of seed embryos. Microfocused Se K-edge XANES and bulk XANES showed that seeds contained 90% of Se as C-Se-C forms. Hydraulically pressing seeds for oil caused changes in the forms of Se as follows: 40-55% C-Se-C forms, 33-42% selenocystine, 5-12% selenocysteine, and 11-14% trimethylselenonium ion. Aqueous extracts of seed and seed meals were also analyzed by SAX-HPLC/ICPMS and found to contain mainly the C-Se-C form SeMet, but also another C-Se-C form MeSeCys, which is of dietary pharmacological interest for cancer inhibition. In addition, SAX-HPLC/ICPMS also detected selenocystine and selenocysteine, further confirming the results obtained by XANES analyses.


Assuntos
Ração Animal , Fenômenos Mecânicos , Mostardeira/metabolismo , Sementes/metabolismo , Selênio/química , Selênio/metabolismo , Cromatografia Líquida de Alta Pressão , Troca Iônica , Espectrometria de Massas , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA