Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 60(14): 10323-10339, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34197094

RESUMO

We report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF4, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with ΦPL of up to 35%, and in solution, with ΦPL of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % Vbur of the P^P ligand. The most emissive complexes were used to fabricate both organic light-emitting diodes and light-emitting electrochemical cells (LECs), both of which showed moderate performance. Compared to the benchmark copper(I)-based LECs, [Cu(dnbp)(DPEPhos)]+ (maximum external quantum efficiency, EQEmax = 16%), complex 3 (EQEmax = 1.85%) showed a much longer device lifetime (t1/2 = 1.25 h and >16.5 h for [Cu(dnbp)(DPEPhos)]+ and complex 3, respectively). The electrochemiluminescence (ECL) properties of several complexes were also studied, which, to the best of our knowledge, constitutes the first ECL study for heteroleptic copper(I) complexes. Notably, complexes exhibiting more reversible electrochemistry were associated with higher annihilation ECL as well as better performance in a LEC.

2.
Inorg Chem ; 59(2): 1145-1152, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31880921

RESUMO

New cycloplatinated N-heterocyclic carbene (NHC) compounds with chelate diphosphines (P^P) as ancillary ligands: [Pt(R-C^C*)(P^P)]PF6 (R = H, P^P = dppm (1A), dppe (2A), dppbz (3A); R = CN, P^P = dppm (1B), dppe (2B), dppbz (3B)) have been prepared from the corresponding starting material [{Pt(R-C^C*)(µ-Cl)}2] (R = H, A, R = CN, B) and fully characterized. The new compound A has been prepared by a stepwise protocol. The photophysical properties of 1A-3A and 1B-3B have been widely studied and supported by the time-dependent-density functional theory. These compounds show an efficient blue (dppe, dppbz) or cyan (dppm) emission in PMMA films (5 wt %), with photoluminescence quantum yield (PLQY) ranging from 30% to 87% under an argon atmosphere. This emission has been assigned mainly to transitions from 3ILCT [π(NHC) → π*(NHC)] excited states with some 3LL'CT [π(NHC) → π*(P^P)] character. The electroluminescence of these materials in proof-of-concept solution-processed organic light-emitting diodes containing 3A and 3B as dopants was investigated. The CIE coordinates for devices based on 3A (0.22, 0.41) and 3B (0.24, 0.44) fit within the sky blue region.

3.
RSC Adv ; 10(11): 6640-6646, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35496020

RESUMO

In perovskite solar cells, the choice of appropriate transport layers and electrodes is of great importance to guarantee efficient charge transport and collection, minimizing recombination losses. The possibility to sequentially process multiple layers by vacuum methods offers a tool to explore the effects of different materials and their combinations on the performance of optoelectronic devices. In this work, the effect of introducing interlayers and altering the electrode work function has been evaluated in fully vacuum-deposited perovskite solar cells. We compared the performance of solar cells employing common electron buffer layers such as bathocuproine (BCP), with other injection materials used in organic light-emitting diodes, such as lithium quinolate (Liq), as well as their combination. Additionally, high voltage solar cells were obtained using low work function metal electrodes, although with compromised stability. Solar cells with enhanced photovoltage and stability under continuous operation were obtained using BCP and BCP/Liq interlayers, resulting in an efficiency of approximately 19%, which is remarkable for simple methylammonium lead iodide absorbers.

4.
Front Chem ; 7: 936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039155

RESUMO

Hole transport layers (HTLs) are of fundamental importance in perovskite solar cells (PSCs), as they must ensure an efficient and selective hole extraction, and ohmic charge transfer to the corresponding electrodes. In p-i-n solar cells, the ITO/HTL is usually not ohmic, and an additional interlayer such as MoO3 is usually placed in between the two materials by vacuum sublimation. In this work, we evaluated the properties of the MoO3/TaTm (TaTm is the HTL N4,N4,N4″,N4″-tetra([1,1'-biphenyl]-4-yl)-[1,1':4',1″-terphenyl]-4,4″-diamine) hole extraction interface by selectively annealing either MoO3 (prior to the deposition of TaTm) or the bilayer MoO3/TaTm (without pre-treatment on the MoO3), at temperature ranging from 60 to 200°C. We then used these p-contacts for the fabrication of a large batch of fully vacuum deposited PSCs, using methylammonium lead iodide as the active layer. We show that annealing the MoO3/TaTm bilayers at high temperature is crucial to obtain high rectification with low non-radiative recombination, due to an increase of the electrode work function and the formation of an ohmic interface with TaTm.

5.
Dalton Trans ; 48(2): 446-460, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30452034

RESUMO

The synthesis and characterization of five [Cu(P^P)(N^N)][PF6] complexes in which P^P = 2,7-bis(tert-butyl)-4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (tBu2xantphos) or the chiral 4,5-bis(mesitylphenylphosphino)-9,9-dimethylxanthene (xantphosMes2) and N^N = 2,2'-bipyridine (bpy), 6-methyl-2,2'-bipyridine (6-Mebpy) or 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me2bpy) are reported. Single crystal structures of four of the compounds confirm that the copper(i) centre is in a distorted tetrahedral environment. In [Cu(xantphosMes2)(6-Mebpy)][PF6], the 6-Mebpy unit is disordered over two equally populated orientations and this disorder parallels a combination of two dynamic processes which we propose for [Cu(xantphosMes2)(N^N)]+ cations in solution. Density functional theory (DFT) calculations reveal that the energy difference between the two conformers observed in the solid-state structure of [Cu(xantphosMes2)(6-Mebpy)][PF6] differ in energy by only 0.28 kcal mol-1. Upon excitation into the MLCT region (λexc = 365 nm), the [Cu(P^P)(N^N)][PF6] compounds are yellow to orange emitters. Increasing the number of Me groups in the bpy unit shifts the emission to higher energies, and moves the Cu+/Cu2+ oxidation to higher potentials. Photoluminescence quantum yields (PLQYs) of the compounds are low in solution, but in the solid state PLQYs of up to 59% (for [Cu(tBu2xantphos)(6,6'-Me2bpy)]+) are observed. Increased excited-state lifetimes at low temperature are consistent with the complexes exhibiting thermally activated delayed fluorescence (TADF). This is supported by the small energy difference calculated between the lowest-energy singlet and triplet excited states (0.17-0.25 eV). The compounds were tested in simple bilayer light-emitting electrochemical cells (LECs). The optoelectronic performances of complexes containing xantphosMes2 were generally lower with respect to those with tBu2xantphos, which led to bright and efficient devices. The best performing LECs were obtained for the complex [Cu(tBu2xantphos)(6,6'-Me2bpy)][PF6] due to the increased steric hindrance at the N^N ligand, resulting in higher PLQY.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Luminescência , Fosfinas/química , Xantenos/química , 2,2'-Dipiridil/química , Complexos de Coordenação/química , Cristalografia por Raios X , Eletroquímica , Ligantes , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
6.
ACS Omega ; 3(3): 2673-2682, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29623303

RESUMO

The straightforward synthesis and photophysical properties of a new series of heteroleptic iridium(III) bis(2-arylimidazole) picolinate complexes are reported. Each complex has been characterized by nuclear magnetic resonance, UV-vis, cyclic voltammetry, and photoluminescent angle dependency, and the emissive properties of each are described. The preferred orientation of transition dipoles in emitter/host thin films indicated more preferred orientation than homoleptic complex Ir(ppy)3.

7.
RSC Adv ; 8(62): 35719-35723, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35547926

RESUMO

A cross-linkable triazatruxene that leads to insoluble films upon thermal annealing at temperatures compatible with flexible substrates is presented. The films were used as the hole transporting and electron blocking layer in partially solution processed phosphorescent organic light-emitting diodes, reaching power conversion efficiencies of 24 lm W-1, an almost 50% improvement compared to the same OLEDs without the cross-linkable hole transporting layer.

8.
Chem Commun (Camb) ; 53(62): 8707-8710, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28722068

RESUMO

Quasi-2D perovskites with the BA : MA molar ratio equal to 3 : 3 show a remarkable PLQY exceeding 80%, thanks to the use of an electron donor as the passivating agent. These films have been applied in LEDs that exhibit high brightness exceeding 1000 cd m-2 and current efficiencies >3 cd A-1.

9.
Dalton Trans ; 45(18): 7748-57, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27055067

RESUMO

The series of osmium(ii) complexes [Os(bpy)3-n(btz)n][PF6]2 (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 0, n = 1, n = 2, n = 3), have been prepared and characterised. The progressive replacement of bpy by btz leads to blue-shifted UV-visible electronic absorption spectra, indicative of btz perturbation of the successively destabilised bpy-centred LUMO. For , a dramatic blue-shift relative to the absorption profile for is observed, indicative of the much higher energy LUMO of the btz ligand over that of bpy, mirroring previously reported data on analogous ruthenium(ii) complexes. Unlike the previously reported ruthenium systems, heteroleptic complexes and display intense emission in the far-red/near-infrared (λmax = 724 and 713 nm respectively in aerated acetonitrile at RT) as a consequence of higher lying, and hence less thermally accessible, (3)MC states. This assertion is supported by ground state DFT calculations which show that the dσ* orbitals of to are destabilised by between 0.60 and 0.79 eV relative to their Ru(ii) analogues. The homoleptic complex appears to display extremely weak room temperature emission, but on cooling to 77 K the complex exhibits highly intense blue emission with λmax 444 nm. As complexes to display room temperature luminescent emission and readily reversible Os(ii)/(iii) redox couples, light-emitting electrochemical cell (LEC) devices were fabricated. All LECs display electroluminescent emission in the deep-red/near-IR (λmax = 695 to 730 nm). Whilst devices based on and show inferior current density and luminance than LECs based on , the device utilising shows the highest external quantum efficiency at 0.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA