Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nanotechnology ; 29(25): 255301, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29596058

RESUMO

Soft nanoimprinted titanium dioxide (TiO2) substrates decorated with methylammonium lead halide perovskite (MAPbI3) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI3 growth methods (1-step and 2-step processing). Both types of MAPbI3 crystals were fabricated on hydrophobic TiO2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 µm × 100 µm were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.

2.
Nanotechnology ; 28(1): 015501, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27897140

RESUMO

AgInS2 (AIS) quantum dots (QDs) were synthesized via a thermal decomposition reaction with dodecylamine as the ligand to help stabilize the QDs. This reaction procedure is relatively easy to implement, scalable to large batches (up to hundreds of milligrams of QDs are produced), and a convenient method for the synthesis of chalcogenide QDs. Metal powders of AgNO3 and In(NO3)3, were used as the metal precursors while diethyldithiocarbamate was used as the sulfur source. The AIS QDs were characterized via transmission electron microscopy, atomic force microscopy, and energy dispersive x-ray spectroscopy. As an application for these less toxic nanomaterials, we demonstrate the selective detection of Trinitrotoluene (TNT) at concentrations as low as 6 micromolar (µM) and without the functionalization of a ligand that is specifically designed to interact with TNT molecules. We also demonstrate a simple approach to patterning the AIS QDs onto filter paper, for the detection of TNT molecules by eye. Collectively, the ease of the synthesis of the less toxic AIS QDs, and the ability to detect TNT molecules by eye suggest an attractive route to highly sensitive and portable substrates for environmental monitoring, chemical warfare agent detection, and other applications.

3.
ACS Appl Mater Interfaces ; 15(22): 26799-26811, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218169

RESUMO

Ammonium perchlorate (AP) is commonly used in propulsion technology. Recent studies have demonstrated that two-dimensional (2D) nanomaterials such as graphene (Gr) and hexagonal boron nitride (hBN) dispersed with nitrocellulose (NC) can conformally coat the surface of AP particles and enhance the reactivity of AP. In this work, the effectiveness of ethyl cellulose (EC) as an alternative to NC was studied. Using a similar encapsulation procedure as in recent work, Gr and hBN dispersed with EC were used to synthesize the composite materials Gr-EC-AP and hBN-EC-AP. Additionally, EC was used because the polymer can be used to disperse other 2D nanomaterials, specifically molybdenum disulfide (MoS2), which has semiconducting properties. While Gr and hBN dispersed in EC had a minimal effect on the reactivity of AP, MoS2 dispersed in EC significantly enhanced the decomposition behavior of AP compared to the control and other 2D nanomaterials, as evidenced by a pronounced low-temperature decomposition event (LTD) centered at 300 °C and then complete high-temperature decomposition (HTD) below 400 °C. Moreover, thermogravimetric analysis (TGA) showed a 5% mass loss temperature (Td5%) of 291 °C for the MoS2-coated AP, which was 17 °C lower than the AP control. The kinetic parameters for the three encapsulated AP samples were calculated using the Kissinger equation and confirmed a lower activation energy pathway for the MoS2 (86 kJ/mol) composite compared to pure AP (137 kJ/mol). This unique behavior of MoS2 is likely due to enhanced oxidation-reduction of AP during the initial stages of the reaction via a transition metal-catalyzed pathway. Density functional theory (DFT) calculations showed that the interactions between AP and MoS2 were stronger than AP on the Gr or hBN surfaces. Overall, this study complements previous work on NC-wrapped AP composites and demonstrates the unique roles of the disperagent and 2D nanomaterial in tuning the thermal decomposition of AP.

4.
Nat Mater ; 7(11): 907-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18836435

RESUMO

The high natural abundance of silicon, together with its excellent reliability and good efficiency in solar cells, suggest its continued use in production of solar energy, on massive scales, for the foreseeable future. Although organics, nanocrystals, nanowires and other new materials hold significant promise, many opportunities continue to exist for research into unconventional means of exploiting silicon in advanced photovoltaic systems. Here, we describe modules that use large-scale arrays of silicon solar microcells created from bulk wafers and integrated in diverse spatial layouts on foreign substrates by transfer printing. The resulting devices can offer useful features, including high degrees of mechanical flexibility, user-definable transparency and ultrathin-form-factor microconcentrator designs. Detailed studies of the processes for creating and manipulating such microcells, together with theoretical and experimental investigations of the electrical, mechanical and optical characteristics of several types of module that incorporate them, illuminate the key aspects.

5.
Angew Chem Int Ed Engl ; 47(30): 5524-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18615769

RESUMO

This article reviews the properties, fabrication and assembly of inorganic semiconductor materials that can be used as active building blocks to form high-performance transistors and circuits for flexible and bendable large-area electronics. Obtaining high performance on low temperature polymeric substrates represents a technical challenge for macroelectronics. Therefore, the fabrication of high quality inorganic materials in the form of wires, ribbons, membranes, sheets, and bars formed by bottom-up and top-down approaches, and the assembly strategies used to deposit these thin films onto plastic substrates will be emphasized. Substantial progress has been made in creating inorganic semiconducting materials that are stretchable and bendable, and the description of the mechanics of these form factors will be presented, including circuits in three-dimensional layouts. Finally, future directions and promising areas of research will be described.

6.
Nat Nanotechnol ; 6(7): 402-7, 2011 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642984

RESUMO

Negative-index metamaterials (NIMs) are engineered structures with optical properties that cannot be obtained in naturally occurring materials. Recent work has demonstrated that focused ion beam and layer-by-layer electron-beam lithography can be used to pattern the necessary nanoscale features over small areas (hundreds of µm(2)) for metamaterials with three-dimensional layouts and interesting characteristics, including negative-index behaviour in the optical regime. A key challenge is in the fabrication of such three-dimensional NIMs with sizes and at throughputs necessary for many realistic applications (including lenses, resonators and other photonic components). We report a simple printing approach capable of forming large-area, high-quality NIMs with three-dimensional, multilayer formats. Here, a silicon wafer with deep, nanoscale patterns of surface relief serves as a reusable stamp. Blanket deposition of alternating layers of silver and magnesium fluoride onto such a stamp represents a process for 'inking' it with thick, multilayer assemblies. Transfer printing this ink material onto rigid or flexible substrates completes the fabrication in a high-throughput manner. Experimental measurements and simulation results show that macroscale, three-dimensional NIMs (>75 cm(2)) nano-manufactured in this way exhibit a strong, negative index of refraction in the near-infrared spectral range, with excellent figures of merit.

7.
Adv Mater ; 22(10): 1084-101, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20401933

RESUMO

Materials exhibiting multidimensional structure with characteristic lengths ranging from the nanometer to the micrometer scale have extraordinary potential for emerging optical applications based on the regulation of light-matter interactions via the mesoscale organization of matter. As the structural dimensionality increases, the opportunities for controlling light-matter interactions become increasingly diverse and powerful. Recent advances in multidimensional structures have been demonstrated that serve as the basis for three-dimensional photonic-bandgap materials, metamaterials, optical cloaks, highly efficient low-cost solar cells, and chemical and biological sensors. In this Review, the state-of-the-art design and fabrication of multidimensional architectures for functional optical devices are covered and the next steps for this important field are described.


Assuntos
Dispositivos Ópticos , Técnicas Biossensoriais , Cristalização , Nanoestruturas/química , Fótons , Energia Solar
8.
Nano Lett ; 6(10): 2318-24, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17034104

RESUMO

This Letter demonstrates a strategy for producing bulk quantities of high quality, dimensionally uniform single-crystal silicon micro- and nanoribbons from bulk silicon (111) wafers. The process uses etched trenches with controlled rippled structures defined on the sidewalls, together with angled evaporation of masking materials and anisotropic wet etching of the silicon, to produce multilayer stacks of ribbons with uniform thicknesses and lithographically defined lengths and widths, across the entire surface of the wafer. Ribbons with thicknesses between tens and hundreds of nanometers, widths in the micrometer range, and lengths of up to several centimeters, can be produced, in bulk quantities, using this approach. Printing processes enable the layer by layer transfer of organized arrays of such ribbons to a range of other substrates. Good electrical properties (mobilities approximately 190 cm(2)V(-1)s(-1), on/off >10(4)) can be achieved with these ribbons in thin film type transistors formed on plastic substrates, thereby demonstrating one potential area of application.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Silício/química , Substâncias Macromoleculares , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Environ Sci Technol ; 39(5): 1209-13, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15787358

RESUMO

Metallothionein (MT), a cysteine-rich metalloprotein that is purported to play an important role in heavy metal accumulation and detoxification, and its related peptidic species were attached onto dithiobissuccinimidyl propionate self-assembled monolayers. The spatially accessible sulfhydryl groups present in these immobilized biomolecules, tagged with N-biotinoyl-N'-[6-maleimidohexanoyl]hydrazide, were detected voltammetrically at a sensitive level via the use of ferrocene (Fc)-capped gold nanoparticle/streptavidin conjugates. The method was established first by examining relatively simple peptides (e.g., glutathione). For the hexapeptidic species that resembles the N-terminus of MT with a sequence of Lys-Cys-Thr-Cys-Cys-Ala, concentration levels as low as 0.050 nM can be determined. Such a remarkable sensitivity is attributed to the presence of a large number of Fc caps present at each gold nanoparticle, which enhances the detection of a small number of surface-bound sulfhydryl groups. Microgravimetric measurements, performed with a quartz crystal microbalance, were used in tandem with voltammetry to quantify the number of tagged sulfhydryl groups. Through extraction of the metals present in MT adsorbate, it is demonstrated that this amplified voltammetric detection is also suitable for the investigation of the variation of the number of sulfhydryl groups present at an electrode and sensitive to the change of surface structure of an immobilized biomolecule. This work represents a new method for the determination of sulfhydryl groups inherent in surface-bound proteins or peptides and can facilitate the study on the environmental issues related to MTs.


Assuntos
Monitoramento Ambiental/métodos , Metalotioneína/análise , Metalotioneína/química , Compostos de Sulfidrila/análise , Poluentes da Água/análise , Ouro/química , Metais Pesados/química , Nanoestruturas , Sensibilidade e Especificidade , Estreptavidina/química
10.
Anal Chem ; 75(10): 2507-11, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12918998

RESUMO

A direct-injection high-efficiency nebulizer (DIHEN) is used to couple a thin-layer electrochemical flow cell on-line with an ICP-mass spectrometer to perform anodic stripping voltammetry (ASV) at a thin mercury film followed by subsequent ICPMS measurements for the stripped metal analytes. The resultant hyphenated technique (ASV-DIHEN-ICPMS) is capable of analyzing select heavy metals present at ultratrace levels (down to low-ppt to sub-ppt levels) that are lower than the detection limits obtained by conventional ICPMS. In addition to its good analytical performance, the technique offers other attractive features such as the ability to eliminate detrimental matrix effects that can compromise ICPMS analyses and the possibility of probing electrode reactions involving trace amounts metal species with ICPMS. For conducting ASV on-line with ICPMS, the DIHEN was found to be more advantageous than the microconcentric nebulizer in terms of minimizing memory effects and potential artifacts caused by the erosion of the Hg film into the flowing solution stream. Compared to a direct injection nebulizer (DIN), the DIHEN was easier to operate. Moreover, its simpler design and the lack of back pressure from the DIHEN capillary made it more compatible with coupling to the thin-layer electrochemical cell than a DIN system.


Assuntos
Eletroquímica/métodos , Espectrometria de Massas/métodos , Eletroquímica/instrumentação , Metais Pesados/análise , Nebulizadores e Vaporizadores , Sensibilidade e Especificidade
11.
Anal Chem ; 75(15): 3941-5, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-14572067

RESUMO

Gold nanoparticle/streptavidin conjugates covered with 6-ferrocenylhexanethiol were attached onto a biotinylated DNA detection probe of a sandwich DNA complex. Due to the elasticity of the DNA strands, the ferrocene caps on gold nanoparticle/streptavidin conjugates are positioned in close proximity to the underlying electrode modified with a mixed DNA capture probe/hexanethiol self-assembled monolayer and can undergo reversible electron-transfer reactions. A detection level, down to 2.0 pM (10 amol for the 5 microL of sample needed) for oligodeoxynucleotide samples was obtained. The amplification of the voltammetric signals was attributed to the attachment of a large number of redox (ferrocene) markers per DNA duplex formed. The ferrocene oxidation current increased with the target concentration and began to level off at a target concentration of 10 nM. An Excellent linearity was found within the range between 6.9 and 150.0 pM and reasonable relative standard deviations (between 3.0 and 13.0%) were obtained. The amenability of this method to the analyses of polynucleotides (i.e., PCR products of the pre-S gene of hepatitis B virus in serum samples) was also demonstrated. The method is shown to be simple, selective, reproducible, and cost-effective and does not require labeling of the DNA targets.


Assuntos
DNA/análise , DNA/química , Eletroquímica/métodos , Compostos Ferrosos/química , Ouro/química , Hibridização de Ácido Nucleico/métodos , Estreptavidina/química , DNA Viral/sangue , DNA Viral/genética , Elasticidade , Eletrodos , Transporte de Elétrons , Vírus da Hepatite B/genética , Metalocenos , Nanotecnologia , Oxirredução , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA