Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 19(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360388

RESUMO

Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Animais , Fatores de Transcrição Forkhead/genética , Humanos , MicroRNAs/genética , Neoplasias/genética
2.
Int J Cancer ; 141(2): 220-230, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28240776

RESUMO

Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , MicroRNAs/genética , Neoplasias/genética , Animais , Antineoplásicos/uso terapêutico , Comunicação Celular , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral
3.
Bioorg Med Chem ; 25(13): 3396-3405, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28478865

RESUMO

The overproduction of nitric oxide (NO) plays an important role in a variety of pathophysiological processes, including inflammation. Therefore, the suppression of NO production is a promising target in the design of anti-inflammatory agents. In the present study, a series of phthalimide analogs was synthesized, and their anti-inflammatory activities were evaluated using lipopolysaccharide (LPS)-stimulated NO production in cultured murine macrophage RAW264.7 cells. A structure-activity relationship study showed that the free hydroxyl group at C-4 and C-6 and the bulkiness of the N-substituted alkyl chain are associated with biological activity. Among the series of phthalimide derivatives, compound IIh exhibited potent inhibitory activity, with an IC50 value of 8.7µg/mL. Further study revealed that the inhibitory activity of compound IIh was correlated with the down-regulation of the mRNA and protein expression of LPS-stimulated inducible nitric oxide synthase (iNOS). Compound IIh also suppressed the induction of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1ß in LPS-stimulated RAW 264.7 cells. The anti-inflammatory activity of compound IIh was also found to be associated with the suppression of the Toll-like receptor (TLR)4 signaling pathway by down-regulating the activation of interferon regulatory factor 3 (IRF-3) and interferon-ß and signal transducer expression. These findings demonstrate that novel phthalimides might be potential candidates for the development of anti-inflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Citocinas/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Ftalimidas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Ftalimidas/síntese química , Ftalimidas/química , Células RAW 264.7 , Relação Estrutura-Atividade
4.
Mar Drugs ; 13(11): 6962-76, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26610526

RESUMO

Hypoxia inducible factor-1α (HIF-1α) is an essential regulator of the cellular response to low oxygen concentrations, activating a broad range of genes that provide adaptive responses to oxygen deprivation. HIF-1α is overexpressed in various cancers and therefore represents a considerable chemotherapeutic target. Salternamide A (SA), a novel small molecule that is isolated from a halophilic Streptomyces sp., is a potent cytotoxic agent against a variety of human cancer cell lines. However, the mechanisms by which SA inhibits tumor growth remain to be elucidated. In the present study, we demonstrate that SA efficiently inhibits the hypoxia-induced accumulation of HIF-1α in a time- and concentration-dependent manner in various human cancer cells. In addition, SA suppresses the upstream signaling of HIF-1α, such as PI3K/Akt/mTOR, p42/p44 MAPK, and STAT3 signaling under hypoxic conditions. Furthermore, we found that SA induces cell death by stimulating G2/M cell cycle arrest and apoptosis in human colorectal cancer cells. Taken together, SA was identified as a novel small molecule HIF-1α inhibitor from marine natural products and is potentially a leading candidate in the development of anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Polienos/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Polienos/administração & dosagem , Polienos/isolamento & purificação , Alcamidas Poli-Insaturadas/administração & dosagem , Alcamidas Poli-Insaturadas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Streptomyces/metabolismo , Fatores de Tempo
5.
J Exp Clin Cancer Res ; 41(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980213

RESUMO

BACKGROUND: Therapeutic resistance occurs in most patients with multiple myeloma (MM). One of the key mechanisms for MM drug resistance comes from the interaction between MM cells and adipocytes that inhibits drug-induced apoptosis in MM cells; MM cells reprogram adipocytes to morph into different characterizations, including exosomes, which are important for tumor-stroma cellular communication. However, the mechanism by which exosomes mediate the cellular machinery of the vicious cycle between MM cells and adipocytes remains unclear. METHODS: Adipocytes were either isolated from bone marrow aspirates of healthy donors or MM patients or derived from mesenchymal stem cells. Co-culturing normal adipocytes with MM cells was used to generate MM-associated adipocytes. Exosomes were collected from the culture medium of adipocytes. Annexin V-binding and TUNEL assays were performed to assess MM cell apoptosis. Methyltransferase activity assay and dot blotting were used to access the m6A methylation activity of methyltransferase like 7A (METTL7A). RIP, MeRIP-seq, and RNA-protein pull down for assessing the interaction between long non-cording RNAs (LncRNAs) and RNA binding proteins were performed. Adipocyte-specific enhancer of zeste homolog 2 (EZH2) knockout mice and MM-xenografted mice were used for evaluating MM therapeutic response in vivo. RESULTS: Exosomes collected from MM patient adipocytes protect MM cells from chemotherapy-induced apoptosis. Two LncRNAs in particular, LOC606724 and SNHG1, are significantly upregulated in MM cells after exposure to adipocyte exosomes. The raised LncRNA levels in MM cells are positively correlated to worse outcomes in patients, indicating their clinical relevancy in MM. The functional roles of adipocyte exosomal LOC606724 or SNHG1 in inhibition of MM cell apoptosis are determined by knockdown in adipocytes or overexpression in MM cells. We discovered the interactions between LncRNAs and RNA binding proteins and identified methyltransferase like 7A (METTL7A) as an RNA methyltransferase. MM cells promote LncRNA package into adipocyte exosomes through METTL7A-mediated LncRNA m6A methylation. Exposure of adipocytes to MM cells enhances METTL7A activity in m6A methylation through EZH2-mediated protein methylation. CONCLUSION: This study elucidates an unexplored mechanism of how adipocyte-rich microenvironment exacerbates MM therapeutic resistance and indicates a potential strategy to improve therapeutic efficacy by blocking this vicious exosome-mediated cycle.


Assuntos
Exossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Mieloma Múltiplo/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Longo não Codificante/genética , Animais , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Metilação , Camundongos , Camundongos Knockout , Mieloma Múltiplo/patologia , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
6.
Nat Commun ; 13(1): 3684, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760800

RESUMO

Osteolytic destruction is a hallmark of multiple myeloma, resulting from activation of osteoclast-mediated bone resorption and reduction of osteoblast-mediated bone formation. However, the molecular mechanisms underlying the differentiation and activity of osteoclasts and osteoblasts within a myelomatous microenvironment remain unclear. Here, we demonstrate that the osteocyte-expressed major histocompatibility complex class II transactivator (CIITA) contributes to myeloma-induced bone lesions. CIITA upregulates the secretion of osteolytic cytokines from osteocytes through acetylation at histone 3 lysine 14 in the promoter of TNFSF11 (encoding RANKL) and SOST (encoding sclerostin), leading to enhanced osteoclastogenesis and decreased osteoblastogenesis. In turn, myeloma cell-secreted 2-deoxy-D-ribose, the product of thymidine catalyzed by the function of thymidine phosphorylase, upregulates CIITA expression in osteocytes through the STAT1/IRF1 signaling pathway. Our work thus broadens the understanding of myeloma-induced osteolysis and indicates a potential strategy for disrupting tumor-osteocyte interaction to prevent or treat patients with myeloma bone disease.


Assuntos
Mieloma Múltiplo , Osteólise , Humanos , Mieloma Múltiplo/complicações , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Nucleares , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteólise/metabolismo , Osteólise/patologia , Osteólise/prevenção & controle , Ligante RANK/metabolismo , Transativadores , Microambiente Tumoral
7.
Oncogene ; 40(2): 384-395, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149280

RESUMO

Paxillin (PXN), a key component of the focal adhesion complex, has been associated with cancer progression, but the underlying mechanisms are poorly understood. The purpose of this study was to elucidate mechanisms by which PXN affects cancer growth and progression, which we addressed using cancer patient data, cell lines, and orthotopic mouse models. We demonstrated a previously unrecognized mechanism whereby nuclear PXN enhances angiogenesis by transcriptionally regulating SRC expression. SRC, in turn, increases PLAT expression through NF-ĸB activation; PLAT promotes angiogenesis via LRP1 in endothelial cells. PXN silencing in ovarian cancer mouse models reduced angiogenesis, tumor growth, and metastasis. These findings provide a new understanding of the role of PXN in regulating tumor angiogenesis and growth.


Assuntos
Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/patologia , Neoplasias Ovarianas/irrigação sanguínea , Paxilina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paxilina/antagonistas & inibidores , Paxilina/genética , Prognóstico , Taxa de Sobrevida , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/genética , Quinases da Família src/metabolismo
8.
Anticancer Res ; 40(4): 1855-1866, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32234873

RESUMO

BACKGROUND/AIM: The resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib or erlotinib, is considered a major challenge in the treatment of patients with non-small cell lung cancer (NSCLC). Herein, we identified the critical roles of anterior gradient 2 (AGR2) in gefitinib (Gef) resistance of mutant NSCLC cells. MATERIALS AND METHODS: Using datasets from a pair of NSCLC-sensitive and NSCLC-resistant cells, immunoblotting, immunofluorescence and immunohistochemistry, and cell viability assays were applied to identify the effects of AGR2. RESULTS: AGR2 was found to be significantly over-expressed in Gef-resistant cells and was highly associated with drug resistance, proliferation, migration, and invasion of cancer cells. Moreover, AGR2 and ADAMTS6 formed a negative feedback loop in drug-resistant cells. CONCLUSION: Modulation of overexpression of AGR2 in mutant NSCLC cells may be an attractive therapeutic strategy for the treatment of EGFR-TKI-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Mucoproteínas/genética , Proteínas Oncogênicas/genética , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Quinazolinas/farmacologia
9.
Curr Med Chem ; 26(25): 4709-4725, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30047325

RESUMO

Cancer chemotherapies or antitumor agents mainly remain the backbone of current treatment based on killing the rapidly dividing cancer cell such as tylophora alkaloids and their analogues which have also demonstrated anticancer potential through diverse biological pathways including regulation of the immune system. The introduction of durable clinically effective monoclonal antibodies, however, unmasked a new era of cancer immunotherapies. Therefore, the understanding of cancer pathogenesis will provide new possible treatment options, including cancer immunotherapy and targeted agents. Combining cytotoxic agents and immunotherapies may offer several unique advantages that are complementary to and potentially synergistic with biologic modalities. Herein, we highlight the dynamic mechanism of action of immune modulation in cancer and the immunological aspects of the orally active antitumor agents tylophora alkaloids and their analogues. We also suggest that future cancer treatments will rely on the development of combining tumor-targeted agents and biologic immunotherapies.


Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Neoplasias/dietoterapia , Tylophora/química , Alcaloides/química , Alcaloides/isolamento & purificação , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antivirais/química , Antivirais/isolamento & purificação , Humanos , Inflamação/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Viroses/tratamento farmacológico
10.
Mol Ther Nucleic Acids ; 16: 118-129, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861414

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded closed RNA molecules that are formed by precursor mRNA back-splicing or skipping events of thousands of genes in eukaryotes as covalently closed continuous loops. High-throughput sequencing and bioinformatics approaches have uncovered the broad expression of circRNAs across species. Their high stability, abundance, and evolutionary conservation among species points to their distinct properties and diverse cellular functions as efficient microRNAs and protein sponges; they also play important roles in modulating transcription and splicing. Additionally, most circRNAs are aberrantly expressed in pathological conditions and in a tissue-specific manner such as development and progression of cancer. Herein, we highlight the characteristics, functions, and mechanisms of action of circRNAs in cancer; we also provide an overview of recent progress in the circRNA field and future application of circRNAs as cancer biomarkers and novel therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA