Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(5): 050203, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39159114

RESUMO

To address the outstanding task of detecting entanglement in large quantum systems, entanglement witnesses have emerged, addressing the separable nature of a state. Yet optimizing witnesses, or accessing them experimentally, often remains a challenge. We here introduce a family of entanglement witnesses for open quantum systems. Based on the electric field, it does not require state tomography or single-site addressing, but rather macroscopic measurements of the field quadratures and of the total fluorescence. Its efficiency is demonstrated by detecting, from almost any direction, the entanglement of collective single-photon states, such as long-lived states generated by cooperative spontaneous emission. Able to detect entanglement in large open quantum systems, and through a single continuous measurement if operating in the stationary regime, these electric-field-based witnesses can be used on any set of emitters described by the Pauli group, such as atomic systems (cold atoms and trapped ions), giant atoms, color centers, and superconducting qubits.

2.
Phys Rev Lett ; 131(22): 223603, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101344

RESUMO

We present a single-shot method to measure motional states in the number basis. The technique can be applied to systems with at least three nondegenerate energy levels which can be coupled to a linear quantum harmonic oscillator. The method relies on probing an Autler-Townes splitting that arises when a phonon-number changing transition is strongly coupled. We demonstrate the method using a single trapped ion and show that it may be used in a nondemolition fashion to prepare phonon number states. We also show how the Autler-Townes splitting can be used to measure phonon number distributions.

3.
Phys Rev Lett ; 123(8): 083401, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491200

RESUMO

Apart from the difficulty of producing highly scattering samples, a major challenge in the observation of Anderson localization of 3D light is identifying an unambiguous signature of the phase transition in experimentally feasible situations. In this Letter, we establish a clear correspondence between the collapse of the conductance, the increase in intensity fluctuations at the localization transition and the scaling analysis results based on the Thouless number, thus connecting the macroscopic and microscopic approaches of localization. Furthermore, the transition thus inferred is fully compatible both with the results based on the eigenvalue analysis of the microscopic description and with the effective-medium Ioffe-Regel criterion.

4.
J Opt Soc Am A Opt Image Sci Vis ; 31(5): 1031-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979635

RESUMO

We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.

5.
Phys Rev Lett ; 110(17): 170603, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679698

RESUMO

Dynamical properties of lattice systems with long-range pair interactions, decaying like 1/r(α) with the distance r, are investigated, in particular the time scales governing the relaxation to equilibrium. Upon varying the interaction range α, we find evidence for the existence of a threshold at α=d/2, dependent on the spatial dimension d, at which the relaxation behavior changes qualitatively and the corresponding scaling exponents switch to a different regime. Based on analytical as well as numerical observations in systems of vastly differing nature, ranging from quantum to classical, from ferromagnetic to antiferromagnetic, and including a variety of lattice structures, we conjecture this threshold and some of its characteristic properties to be universal.

6.
Eur Phys J D At Mol Opt Phys ; 76(12): 246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568919

RESUMO

The Siegert relation relates field and intensity temporal correlations. After a historical review of the Siegert relation and the Hanbury Brown and Twiss effect, we discuss the validity of this relation in two different domains. We first show that this relation can be used in astrophysics to determine the fundamental parameters of stars, and that it is especially important for the observation with stellar emission lines. Second, we check the validity of this relation for moving quantum scatterers illuminated by a strong driving field.

7.
Phys Rev E ; 99(1-1): 010104, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780368

RESUMO

Inspired by one-dimensional light-particle systems, the dynamics of a non-Hamiltonian system with long-range forces is investigated. While the molecular dynamics does not reach an equilibrium state, it may be approximated in the thermodynamic limit by a Vlasov equation that does possess stable stationary solutions. This implies that on a macroscopic scale the molecular dynamics evolves on a slow timescale that diverges with the system size. At the single-particle level, the evolution is driven by incoherent interaction between the particles, which may be effectively modeled by a noise, leading to a Brownian-like dynamics of the momentum. Because this self-generated diffusion process depends on the particle distribution, the associated Fokker-Planck equation is nonlinear, and a subdiffusive behavior of the momentum fluctuations emerges, in agreement with numerics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA