RESUMO
Reactive oxygen species (ROS) increase during adipogenesis and in obesity. Oxidants react with cysteine residues of proteins to form glutathione (GSH) adducts, S-glutathionylation, that are selectively removed by glutaredoxin-1 (Glrx). We have previously reported that Glrx knockout mice had increased protein S-glutathionylation and developed obesity by an unknown mechanism. In this study, we demonstrated that 3T3L1 adipocytes differentiation increased ROS and protein S-glutathionylation. Glrx ablation elevated protein S-glutathionylation and lipid content in 3T3L1 cells. Glrx replenishment decreased the lipid content of Glrx KO 3T3L1 cells. Glrx KO also increased protein expression and protein S-glutathionylation of the adipogenic transcription factor CCAAT enhancer-binding protein (C/EBP) ß. Protein S-glutathionylation decreased the interaction of C/EBPß and protein inhibitor of activated STAT (PIAS) 1, a small ubiquitin-related modifier E3 ligase that facilitates C/EBPß degradation. Experiments with truncated mutant C/EBPß demonstrated that PIAS1 interacted with the liver-enriched inhibitory protein (LIP) region of C/EBPß. Furthermore, mass spectrometry analysis identified protein S-glutathionylation of Cys201 and Cys296 in the LIP region of C/EBPß. The C201S, C296S double-mutant C/EBPß prevented protein S-glutathionylation and preserved the interaction with PIAS1. In summary, Glrx ablation stimulated 3T3L1 cell differentiation and adipogenesis via increased protein S-glutathionylation of C/EBPß, stabilizing and increasing C/EBPß protein levels.
Assuntos
Adipócitos/citologia , Adipogenia , Proteína beta Intensificadora de Ligação a CCAAT/química , Regulação da Expressão Gênica , Glutarredoxinas/fisiologia , Glutationa/metabolismo , Proteína S/química , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Camundongos , Camundongos Knockout , Processamento de Proteína Pós-TraducionalRESUMO
Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.
Assuntos
Sistema Cardiovascular , Educação/métodos , Insuficiência Cardíaca/terapia , Mitocôndrias/fisiologia , National Heart, Lung, and Blood Institute (U.S.) , Relatório de Pesquisa , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Sistema Cardiovascular/patologia , Educação/tendências , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendências , Relatório de Pesquisa/tendências , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Estados Unidos/epidemiologiaRESUMO
Metabolic heart disease (MHD), which is strongly associated with heart failure with preserved ejection fraction, is characterized by reduced mitochondrial energy production and contractile performance. In this study, we tested the hypothesis that an acute increase in ATP synthesis, via short chain fatty acid (butyrate) perfusion, restores contractile function in MHD. Isolated hearts of mice with MHD due to consumption of a high fat high sucrose (HFHS) diet or on a control diet (CD) for 4 months were studied using 31 P NMR spectroscopy to measure high energy phosphates and ATP synthesis rates during increased work demand. At baseline, HFHS hearts had increased ADP and decreased free energy of ATP hydrolysis (ΔG~ATP ), although contractile function was similar between the two groups. At high work demand, the ATP synthesis rate in HFHS hearts was reduced by over 50%. Unlike CD hearts, HFHS hearts did not increase contractile function at high work demand, indicating a lack of contractile reserve. However, acutely supplementing HFHS hearts with 4mM butyrate normalized ATP synthesis, ADP, ΔG~ATP and contractile reserve. Thus, acute reversal of depressed mitochondrial ATP production improves contractile dysfunction in MHD. These findings suggest that energy starvation may be a reversible cause of myocardial dysfunction in MHD, and opens new therapeutic opportunities.
Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Butiratos/farmacologia , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/efeitos dos fármacos , Animais , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hidrólise , Espectroscopia de Ressonância Magnética , Masculino , Doenças Metabólicas/diagnóstico por imagem , Doenças Metabólicas/fisiopatologia , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , TermodinâmicaRESUMO
Glutaredoxin-1 (Glrx) is a small cytosolic enzyme that removes S-glutathionylation, glutathione adducts of protein cysteine residues, thus modulating redox signaling and gene transcription. Although Glrx up-regulation prevented endothelial cell (EC) migration and global Glrx transgenic mice had impaired ischemic vascularization, the effects of cell-specific Glrx overexpression remained unknown. Here, we examined the role of EC-specific Glrx up-regulation in distinct models of angiogenesis; namely, hind limb ischemia and tumor angiogenesis. EC-specific Glrx transgenic (EC-Glrx TG) overexpression in mice significantly impaired EC migration in Matrigel implants and hind limb revascularization after femoral artery ligation. Additionally, ECs migrated less into subcutaneously implanted B16F0 melanoma tumors as assessed by decreased staining of EC markers. Despite reduced angiogenesis, EC-Glrx TG mice unexpectedly developed larger tumors compared with control mice. EC-Glrx TG mice showed higher levels of VEGF-A in the tumors, indicating hypoxia, which may stimulate tumor cells to form vascular channels without EC, referred to as vasculogenic mimicry. These data suggest that impaired ischemic vascularization does not necessarily associate with suppression of tumor growth, and that antiangiogenic therapies may be ineffective for melanoma tumors because of their ability to implement vasculogenic mimicry during hypoxia.-Yura, Y., Chong, B. S. H., Johnson, R. D., Watanabe, Y., Tsukahara, Y., Ferran, B., Murdoch, C. E., Behring, J. B., McComb, M. E., Costello, C. E., Janssen-Heininger, Y. M. W., Cohen, R. A., Bachschmid, M. M., Matsui, R. Endothelial cell-specific redox gene modulation inhibits angiogenesis but promotes B16F0 tumor growth in mice.
Assuntos
Células Endoteliais/metabolismo , Glutarredoxinas/metabolismo , Melanoma/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Feminino , Artéria Femoral/cirurgia , Glutarredoxinas/genética , Membro Posterior/irrigação sanguínea , Membro Posterior/cirurgia , Isquemia , Ligadura , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias ExperimentaisRESUMO
The 66-kDa Src homology 2 domain-containing protein (p66Shc) is a master regulator of reactive oxygen species (ROS). It is expressed in many tissues where it contributes to organ dysfunction by promoting oxidative stress. In the vasculature, p66Shc-induced ROS engenders endothelial dysfunction. Here we show that p66Shc is a direct target of the Sirtuin1 lysine deacetylase (Sirt1), and Sirt1-regulated acetylation of p66Shc governs its capacity to induce ROS. Using diabetes as an oxidative stimulus, we demonstrate that p66Shc is acetylated under high glucose conditions and is deacetylated by Sirt1 on lysine 81. High glucose-stimulated lysine acetylation of p66Shc facilitates its phosphorylation on serine 36 and translocation to the mitochondria, where it promotes hydrogen peroxide production. Endothelium-specific transgenic and global knockin mice expressing p66Shc that is not acetylatable on lysine 81 are protected from diabetic oxidative stress and vascular endothelial dysfunction. These findings show that p66Shc is a target of Sirt1, uncover a unique Sirt1-regulated lysine acetylation-dependent mechanism that governs the oxidative function of p66Shc, and demonstrate the importance of p66Shc lysine acetylation in vascular oxidative stress and diabetic vascular pathophysiology.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Estresse Oxidativo , Sirtuína 1/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Endotélio Vascular/fisiopatologia , Glucose/farmacologia , Células HEK293 , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Interferência de RNA , Sirtuína 1/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genéticaRESUMO
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body's reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents.
Assuntos
Doenças Cardiovasculares/metabolismo , Glutarredoxinas/fisiologia , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Antioxidantes/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Dissulfetos/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glutarredoxinas/deficiência , Glutarredoxinas/uso terapêutico , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys(520) (mouse Cys(533)). In addition, an HIF-1α Cys(520) serine mutant is resistant to 2-AAPA-induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys(520) promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles.
Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Membro Posterior/irrigação sanguínea , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Animais , Hipóxia Celular , Glutarredoxinas/genética , Células HEK293 , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/genética , Isquemia/patologia , Camundongos , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estabilidade Proteica , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Metabolic syndrome is a cluster of obesity-related metabolic abnormalities that lead to metabolic heart disease (MHD) with left ventricular pump dysfunction. Although MHD is thought to be associated with myocardial energetic deficiency, two key questions have not been answered. First, it is not known whether there is a sufficient energy deficit to contribute to pump dysfunction. Second, the basis for the energy deficit is not clear. To address these questions, mice were fed a high fat, high sucrose (HFHS) 'Western' diet to recapitulate the MHD phenotype. In isolated beating hearts, we used 31P NMR spectroscopy with magnetization transfer to determine a) the concentrations of high energy phosphates ([ATP], [ADP], [PCr]), b) the free energy of ATP hydrolysis (∆G~ATP), c) the rate of ATP production and d) flux through the creatine kinase (CK) reaction. At the lowest workload, the diastolic pressure-volume relationship was shifted upward in HFHS hearts, indicative of diastolic dysfunction, whereas systolic function was preserved. At this workload, the rate of ATP synthesis was decreased in HFHS hearts, and was associated with decreases in both [PCr] and ∆G~ATP. Higher work demands unmasked the inability of HFHS hearts to increase systolic function and led to a further decrease in ∆G~ATP to a level that is not sufficient to maintain normal function of sarcoplasmic Ca2+-ATPase (SERCA). While [ATP] was preserved at all work demands in HFHS hearts, the progressive increase in [ADP] led to a decrease in ∆G~ATP with increased work demands. Surprisingly, CK flux, CK activity and total creatine were normal in HFHS hearts. These findings differ from dilated cardiomyopathy, in which the energetic deficiency is associated with decreases in CK flux, CK activity and total creatine. Thus, in HFHS-fed mice with MHD there is a distinct metabolic phenotype of the heart characterized by a decrease in ATP production that leads to a functionally-important energetic deficiency and an elevation of [ADP], with preservation of CK flux.
Assuntos
Trifosfato de Adenosina/metabolismo , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Contração Miocárdica , Animais , Peso Corporal , Creatina Quinase/metabolismo , Diástole , Dieta Hiperlipídica , Sacarose Alimentar , Metabolismo Energético , Hidrólise , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , PerfusãoRESUMO
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m(-1) s(-1)) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.
Assuntos
Glutarredoxinas , Glutationa , Peroxirredoxinas , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Domínio Catalítico , Linhagem Celular , Cisteína , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/química , Glutationa/genética , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/química , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
The endothelium produces and responds to reactive oxygen and nitrogen species (RONS), providing important redox regulation to the cardiovascular system in physiology and disease. In no other situation are RONS more critical than in the response to tissue ischemia. Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on low levels of RONS, which paradoxically must overcome the damaging effects of high levels of RONS generated as a result of ischemia. Although the generation of endothelial cell RONS in hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate that GSH adducts on certain proteins are essential to growth factor responses in endothelial cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein adducts, improves, whereas its overexpression impairs revascularization of the ischemic hindlimb of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, including p65 NF-kB and the sarcoplasmic reticulum calcium ATPase 2, evidently promote ischemic angiogenesis. Identifying the specific proteins in the redox response to ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia.
Assuntos
Células Endoteliais/metabolismo , Isquemia/fisiopatologia , Neovascularização Patológica/fisiopatologia , Animais , Cisteína/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Humanos , NF-kappa B/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismoRESUMO
BACKGROUND: Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. METHODS AND RESULTS: Male C57BL/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. CONCLUSIONS: MHD due to consumption of a HFHS "Western" diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Assuntos
Dieta Hiperlipídica/efeitos adversos , Complexo II de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Processamento de Proteína Pós-Traducional , Trifosfato de Adenosina/metabolismo , Animais , Ativação Enzimática , Glutationa/metabolismo , Peróxido de Hidrogênio , Masculino , Camundongos , Proteínas Mitocondriais/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome.
Assuntos
Apoptose , Fígado/metabolismo , Mutação , Estresse Oxidativo , Sirtuína 1/genética , Sequência de Aminoácidos , Animais , Glutarredoxinas/genética , Glutationa/química , Células HEK293 , Células Hep G2 , Humanos , Hepatopatias/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Oxidantes/química , Oxirredução , Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de SinaisRESUMO
Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.
Assuntos
Glutarredoxinas/genética , Membro Posterior/irrigação sanguínea , Isquemia/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Glutarredoxinas/metabolismo , Membro Posterior/fisiopatologia , Humanos , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima , Proteínas Wnt/metabolismo , Proteína Wnt-5aRESUMO
Bottom-up proteomics is a powerful tool for characterization of protein post-translational modifications (PTMs), where PTMs are identified at the peptide level by mass spectrometry (MS) following protein digestion. However, enzymatic digestion is associated with additional sample processing steps that may potentially introduce artifactual modifications. Here, during an MS study of the PTMs of the regulator of G-protein signaling 4, we discovered that the use of ProteaseMAX, which is an acid-labile surfactant commonly used to improve protein solubilization and digestion efficiency, can lead to in vitro modifications on cysteine residues. These hydrophobic modifications resemble S-palmitoylation and hydroxyfarnesylation, thus discouraging the use of ProteaseMAX in studies of lipid modifications of proteins. Furthermore, since they target the cysteine thiol group, the presence of these artifacts will inevitably lead to inaccuracies in quantitative analysis of cysteine modifications.
Assuntos
Artefatos , Proteínas/análise , Proteômica , Tensoativos/química , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Using a novel cysteine thiol labeling strategy coupled with mass spectrometric analysis, we identified and quantified the changes in global reversible cysteine oxidation of proteins in the left ventricle of hearts from mice with metabolic syndrome-associated diastolic dysfunction. This phenotype was induced by feeding a high-fat, high-sucrose, type-2 diabetogenic diet to C57BL/6J mice for 8 mo. The extent of reversible thiol oxidation in relationship to the total available (free and reducible) level of each cysteine could be confidently determined for 173 proteins, of which 98 contained cysteines differentially modified ≥1.5-fold by the diet. Our findings suggest that the metabolic syndrome leads to potentially deleterious changes in the oxidative modification of metabolically active proteins. These alterations may adversely regulate energy substrate flux through glycolysis, ß-oxidation, citric acid (TCA) cycle, and oxidative phosphorylation (oxphos), thereby contributing to maladaptive tissue remodeling that is associated with, and possibly contributing to, diastolic left ventricular dysfunction.
Assuntos
Cisteína/genética , Dieta/efeitos adversos , Cardiopatias/etiologia , Oxigênio/química , Animais , Cromatografia Líquida , Ciclo do Ácido Cítrico , Cisteína/química , Ácidos Graxos/química , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miocárdio/metabolismo , Obesidade/metabolismo , Fosforilação Oxidativa , Fenótipo , Processamento de Proteína Pós-Traducional , Proteômica , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/química , Espectrometria de Massas em TandemRESUMO
We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling.
Assuntos
Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Indução Enzimática/fisiologia , Humanos , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes.
Assuntos
Glutationa/metabolismo , Neovascularização Patológica , Proteínas Proto-Oncogênicas/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Animais , Glutarredoxinas/metabolismo , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Regulação para Cima , Proteína Wnt-5aRESUMO
Here we demonstrate a new paradigm in redox signaling, whereby oxidants resulting from metabolic stress directly alter protein palmitoylation by oxidizing reactive cysteine thiolates. In mice fed a high-fat, high-sucrose diet and in cultured endothelial cells (ECs) treated with high palmitate and high glucose (HPHG), there was decreased HRas palmitoylation on Cys181/184 (61±24% decrease for cardiac tissue and 38±7.0% in ECs). This was due to oxidation of Cys181/184, detected using matrix-assisted laser desorption/ionization time of flight (MALDI TOF)-TOF. Decrease in HRas palmitoylation affected its compartmentalization and Ras binding domain binding activity, with a shift from plasma membrane tethering to Golgi localization. Loss of plasma membrane-bound HRas decreased growth factor-stimulated ERK phosphorylation (84±8.6% decrease) and increased apoptotic signaling (24±6.5-fold increase) after HPHG treatment that was prevented by overexpressing wild-type but not C181/184S HRas. The essential role of HRas in metabolic stress was made evident by the similar effects of expressing an inactive dominant negative N17-HRas or a MEK inhibitor. Furthermore, the relevance of thiol oxidation was demonstrated by overexpressing manganese superoxide dismutase, which improved HRas palmitoylation and ERK phosphorylation, while lessening apoptosis in HPHG treated ECs.
Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Apoptose/fisiologia , Bovinos , Células Cultivadas , Cisteína/química , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/efeitos adversos , Glucose/administração & dosagem , Glucose/efeitos adversos , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Estresse Fisiológico , Sacarose/administração & dosagem , Sacarose/efeitos adversos , Superóxido Dismutase/metabolismoRESUMO
Downregulation of endothelial Sirtuin1 (Sirt1) in insulin resistant states contributes to vascular dysfunction. Furthermore, Sirt1 deficiency in skeletal myocytes promotes insulin resistance. Here, we show that deletion of endothelial Sirt1, while impairing endothelial function, paradoxically improves skeletal muscle insulin sensitivity. Compared to wild-type mice, male mice lacking endothelial Sirt1 (E-Sirt1-KO) preferentially utilize glucose over fat, and have higher insulin sensitivity, glucose uptake, and Akt signaling in fast-twitch skeletal muscle. Enhanced insulin sensitivity of E-Sirt1-KO mice is transferrable to wild-type mice via the systemic circulation. Endothelial Sirt1 deficiency, by inhibiting autophagy and activating nuclear factor-kappa B signaling, augments expression and secretion of thymosin beta-4 (Tß4) that promotes insulin signaling in skeletal myotubes. Thus, unlike in skeletal myocytes, Sirt1 deficiency in the endothelium promotes glucose homeostasis by stimulating skeletal muscle insulin sensitivity through a blood-borne mechanism, and augmented secretion of Tß4 by Sirt1-deficient endothelial cells boosts insulin signaling in skeletal muscle cells.
Assuntos
Resistência à Insulina , Sirtuína 1 , Animais , Masculino , Camundongos , Células Endoteliais , Endotélio , Glucose , Insulina , Músculo Esquelético , Secretoma , Sirtuína 1/genéticaRESUMO
Liver fibrosis is a sign of non-alcoholic fatty liver disease progression towards steatohepatitis (NASH) and cirrhosis and is accelerated by aging. Glutaredoxin-1 (Glrx) controls redox signaling by reversing protein S-glutathionylation, induced by oxidative stress, and its deletion causes fatty liver in mice. Although Glrx regulates various pathways, including metabolism and apoptosis, the impact of Glrx on liver fibrosis has not been studied. Therefore, we evaluated the role of Glrx in liver fibrosis induced by aging or by a high-fat, high-fructose diet. We found that: (1) upregulation of Glrx expression level inhibits age-induced hepatic apoptosis and liver fibrosis. In vitro studies indicate that Glrx regulates Fas-induced apoptosis in hepatocytes; (2) diet-induced NASH leads to reduced expression of Glrx and higher levels of S-glutathionylated proteins in the liver. In the NASH model, hepatocyte-specific adeno-associated virus-mediated Glrx overexpression (AAV-Hep-Glrx) suppresses fibrosis and apoptosis and improves liver function; (3) AAV-Hep-Glrx significantly inhibits transcription of Zbtb16 and negatively regulates immune pathways in the NASH liver. In conclusion, the upregulation of Glrx is a potential therapeutic for the reversal of NASH progression by attenuating inflammatory and fibrotic processes.