Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 52(6): 403-419, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36112128

RESUMO

Aluminum (Al) salts are commonly used as adjuvants in human and veterinary vaccines for almost a century. Despite this long history of use and the very large number of exposed individuals, data in the literature concerning the fate of these molecules after injection and their potential effects on the nervous system is limited. In the context of (i) an increase of exposure to Al salts through vaccination; (ii) the absence of safety values determined by health regulators; (iii) the lack of robustness of the studies used as references to officially claim Al adjuvant innocuity; (iv) the publication of several animal studies investigating Al salts clearance/biopersistence and neurotoxicity; we have examined in this review all published studies performed on animals and assessing Al adjuvants kinetics, biodistribution, and neuromodulation since the first work of A. Glenny in the 1920s. The diversity of methodological approaches, results, and potential weaknesses of the 31 collected studies are exposed. A large range of protocols has been used, including a variety of exposure schedule and analyses methods, making comparisons between studies uneasy. Nevertheless, published data highlight that when biopersistence, translocation, or neuromodulation were assessed, they were documented whatever the different in vivo models and methods used. Moreover, the studies pointed out the crucial importance of the different Al adjuvant physicochemical properties and host genetic background on their kinetics, biodistribution, and neuromodulatory effects. Regarding the state of the art on this key public health topic, further studies are clearly needed to determine the exact safety level of Al salts.


Assuntos
Alumínio , Sais , Animais , Humanos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/toxicidade , Alumínio/toxicidade , Cinética , Distribuição Tecidual
2.
Sci Rep ; 13(1): 3198, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823452

RESUMO

Aluminum compounds are the most widely used adjuvants in veterinary and human vaccines. Despite almost a century of use and substantial advances made in recent decades about their fate and biological effects, the exact mechanism of their action has been continuously debated, from the initial "depot-theory" to the direct immune system stimulation, and remains elusive. Here we investigated the early in vitro response of primary human PBMCs obtained from healthy individuals to aluminum oxyhydroxide (the most commonly used adjuvant) and a whole vaccine, in terms of internalization, conventional and non-conventional autophagy pathways, inflammation, ROS production, and mitochondrial metabolism. During the first four hours of contact, aluminum oxyhydroxide particles, with or without adsorbed vaccine antigen, (1) were quickly recognized and internalized by immune cells; (2) increased and balanced two cellular clearance mechanisms, i.e. canonical autophagy and LC3-associated phagocytosis; (3) induced an inflammatory response with TNF-α production as an early event; (4) and altered mitochondrial metabolism as assessed by both decreased maximal oxygen consumption and reduced mitochondrial reserve, thus potentially limiting further adaptation to other energetic requests. Further studies should consider a multisystemic approach of the cellular adjuvant mechanism involving interconnections between clearance mechanism, inflammatory response and mitochondrial respiration.


Assuntos
Alumínio , Vacinas , Humanos , Hidróxido de Alumínio/farmacologia , Adjuvantes Imunológicos/farmacologia , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA