Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069044

RESUMO

In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.

2.
Int J Biol Macromol ; 106: 39-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28774806

RESUMO

Electro-spun regenerated silk webs have been extensively studied for biomedical applications because of the simplicity of their fabrication methods However, the productivity of the electro-spinning process is low for web fabrication and the mechanical properties of the electro-spun silk web are not satisfactory, which restricts its commercialization. In this study, a new silk non-woven fabric was successfully fabricated by wetting and hot press treatments using the excellent binding characteristic of sericin. The effects of the press temperature and residual sericin content on the preparation, structure, and properties of the silk non-woven fabric were examined. A press temperature of 200°C was optimum for obtaining non-woven fabrics with best mechanical properties, without yellowing. The silk non-woven fabric could not be fabricated without sericin, and a minimum of 8% sericin was required to fabricate it. As the sericin content was increased, the strength and Young's modulus of the silk non-woven fabric increased, while the tensile elongation remained constant. Regardless of the press temperature and sericin content, all the silk non-woven fabrics showed good cell viability, comparable to that of the tissue culture plate (TCP) used as a control until 4days, which however decreased compared to that of TCP after 7days.


Assuntos
Sericinas/química , Têxteis/análise , Alicerces Teciduais , Animais , Bombyx , Sobrevivência Celular/efeitos dos fármacos , Módulo de Elasticidade , Temperatura Alta , Teste de Materiais , Camundongos , Células NIH 3T3 , Pressão , Sericinas/isolamento & purificação , Sericinas/farmacologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA