Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(14): 5843-5849, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36990442

RESUMO

Fluorescent labeling allows for imaging and tracking of vesicles down to single-particle level. Among several options to introduce fluorescence, staining of lipid membranes with lipophilic dyes provides a straightforward approach without interfering with vesicle content. However, incorporating lipophilic molecules into vesicle membranes in an aqueous solution is generally not efficient because of their low water solubility. Here, we describe a simple, fast (<30 min), and highly effective procedure for fluorescent labeling of vesicles including natural extracellular vesicles. By adjusting the ionic strength of the staining buffer with NaCl, the aggregation status of DiI, a representative lipophilic tracer, can be controlled reversibly. Using cell-derived vesicles as a model system, we show that dispersion of DiI under low-salt condition improved its incorporation into vesicles by a factor of 290. In addition, increasing NaCl concentration after labeling induced free dye molecules to form aggregates, which can be filtered and thus effectively removed without ultracentrifugation. We consistently observed 6- to 85-fold increases in the labeled vesicle count across different types of dyes and vesicles. The method is expected to reduce the concern about off-target labeling resulting from the use of high concentrations of dyes.


Assuntos
Corantes Fluorescentes , Cloreto de Sódio , Corantes Fluorescentes/metabolismo , Ultracentrifugação , Coloração e Rotulagem
2.
J Extracell Vesicles ; 12(5): e12322, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186457

RESUMO

Membrane-bound vesicles such as extracellular vesicles (EVs) can function as biochemical effectors on target cells. Docking of the vesicles onto recipient plasma membranes depends on their interaction with cell-surface proteins, but a generalizable technique that can quantitatively observe these vesicle-protein interactions (VPIs) is lacking. Here, we describe a fluorescence microscopy that measures VPIs between single vesicles and cell-surface proteins, either in a surface-tethered or in a membrane-embedded state. By employing cell-derived vesicles (CDVs) and intercellular adhesion molecule-1 (ICAM-1) as a model system, we found that integrin-driven VPIs exhibit distinct modes of affinity depending on vesicle origin. Controlling the surface density of proteins also revealed a strong support from a tetraspanin protein CD9, with a critical dependence on molecular proximity. An adsorption model accounting for multiple protein molecules was developed and captured the features of density-dependent cooperativity. We expect that VPI imaging will be a useful tool to dissect the molecular mechanisms of vesicle adhesion and uptake, and to guide the development of therapeutic vesicles.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo
3.
J Biotechnol ; 356: 1-7, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870620

RESUMO

Bacterial outer membrane vesicles (OMVs) are small unilamellar proteoliposomes, which are involved in various functions including cell to cell signaling and protein excretion. Here, we have engineered the OMVs of Escherichia coli to nano-scaled bioreactors for the degradation of ß-lactam antibiotics. This was exploited by targeting a ß-lactamase (i.e., CMY-10) into the OMVs of a hyper-vesiculating E. coli BL21(DE3) mutant. The CMY-10-containing OMVs, prepared from the E. coli mutant cultures, were able to hydrolyze ß-lactam ring of nitrocefin and meropenem to a specific rate of 6.6 × 10-8 and 3.9 × 10-12 µmol/min/µm3 of OMV, which is approximately 100 and 600-fold greater than those of E. coli-based whole-cell biocatalsyts. Furthermore, CMY-10, which was encapsulated in the engineered OMVs, was much more stable against temperature and acid stresses, as compared to free enzymes in aqueous phase. The OMV-based nano-scaled reaction system would be useful for the remediation of a variety of antibiotics pollution for food and agricultural industry.


Assuntos
Membrana Externa Bacteriana , Escherichia coli , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , beta-Lactamas/metabolismo
4.
Nat Commun ; 11(1): 2258, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382158

RESUMO

En route to a bio-based chemical industry, the conversion of fatty acids into building blocks is of particular interest. Enzymatic routes, occurring under mild conditions and excelling by intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty alcohols. In a first step the C=C-double bond is stereoselectively hydrated using oleate hydratases from Lactobacillus reuteri or Stenotrophomonas maltophilia. Also, dihydroxylation mediated by the 5,8-diol synthase from Aspergillus nidulans is demonstrated. The second step comprises decarboxylation of the intermediate hydroxy acids by the photoactivated decarboxylase from Chlorella variabilis NC64A. A broad range of (poly)unsaturated fatty acids can be transformed into enantiomerically pure fatty alcohols in a simple one-pot approach.


Assuntos
Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Limosilactobacillus reuteri/metabolismo , Stenotrophomonas maltophilia/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA