Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 34(39): 13222-33, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25253866

RESUMO

After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.


Assuntos
Receptor gp130 de Citocina/metabolismo , Regeneração Nervosa , Neuritos/metabolismo , Fator de Transcrição STAT3/metabolismo , Nervo Isquiático/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Processos de Crescimento Celular , Células Cultivadas , Receptor gp130 de Citocina/genética , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Fosforilação , Fator de Transcrição STAT3/genética , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia
2.
Cell Tissue Res ; 349(1): 105-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22311207

RESUMO

The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of ß-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Família Multigênica , Receptores de Superfície Celular/metabolismo , Animais , Axônios/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA