Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 35, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429789

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a poor prognosis. Doxorubicin is part of standard curative therapy for TNBC, but chemotherapy resistance remains an important clinical challenge. Bocodepsin (OKI-179) is a small molecule class I histone deacetylase (HDAC) inhibitor that promotes apoptosis in TNBC preclinical models. The purpose of this study was to investigate the combination of bocodepsin and doxorubicin in preclinical TNBC models and evaluate the impact on terminal cell fate, including apoptosis and senescence. METHODS: TNBC cell lines were treated with doxorubicin and CellTiter-Glo was used to assess proliferation and determine doxorubicin sensitivity. Select cell lines were treated with OKI-005 (in vitro version of bocodepsin) and doxorubicin and assessed for proliferation, apoptosis as measured by Annexin V/PI, and cell cycle by flow cytometry. Immunoblotting was used to assess changes in mediators of apoptosis, cell cycle arrest, and senescence. Senescence was measured by the senescence-associated ß-galactosidase assay. An MDA-MB-231 xenograft in vivo model was treated with bocodepsin, doxorubicin, or the combination and assessed for inhibition of tumor growth. shRNA knockdown of p53 was performed in the CAL-51 cell line and proliferation, apoptosis and senescence were assessed in response to combination treatment. RESULTS: OKI-005 and doxorubicin resulted in synergistic antiproliferative activity in TNBC cells lines regardless of p53 mutation status. The combination led to increased apoptosis and decreased senescence. In vivo, the combination resulted in increased tumor growth inhibition compared to either single agent. shRNA knock-down of p53 led to increased doxorubicin-induced senescence that was decreased with the addition of OKI-005 in vitro. CONCLUSION: The addition of bocodepsin to doxorubicin resulted in synergistic antiproliferative activity in vitro, improved tumor growth inhibition in vivo, and promotion of apoptosis which makes this a promising combination to overcome doxorubicin resistance in TNBC. Bocodepsin is currently in clinical development and has a favorable toxicity profile compared to other HDAC inhibitors supporting the feasibility of evaluating this combination in patients with TNBC.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , RNA Interferente Pequeno
2.
Int J Cancer ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001563

RESUMO

Despite advancements in treating cutaneous melanoma, patients with acral and mucosal (A/M) melanomas still have limited therapeutic options and poor prognoses. We analyzed 156 melanomas (101 cutaneous, 28 acral, and 27 mucosal) using the Foundation One cancer-gene specific clinical testing platform and identified new, potentially targetable genomic alterations (GAs) in specific anatomic sites of A/M melanomas. Using novel pre-clinical models of A/M melanoma, we demonstrate that several GAs and corresponding oncogenic pathways associated with cutaneous melanomas are similarly targetable in A/M melanomas. Other alterations, including MYC and CRKL amplifications, were unique to A/M melanomas and susceptible to indirect targeting using the BRD4 inhibitor JQ1 or Src/ABL inhibitor dasatinib, respectively. We further identified new, actionable A/M-specific alterations, including an inactivating NF2 fusion in a mucosal melanoma responsive to dasatinib in vivo. Our study highlights new molecular differences between cutaneous and A/M melanomas, and across different anatomic sites within A/M, which may change clinical testing and treatment paradigms for these rare melanomas.

3.
BMC Cancer ; 22(1): 1107, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309653

RESUMO

BACKGROUND: AZD0156 is an oral inhibitor of ATM, a serine threonine kinase that plays a key role in DNA damage response (DDR) associated with double-strand breaks. Topoisomerase-I inhibitor irinotecan is used clinically to treat colorectal cancer (CRC), often in combination with 5-fluorouracil (5FU). AZD0156 in combination with irinotecan and 5FU was evaluated in preclinical models of CRC to determine whether low doses of AZD0156 enhance the cytotoxicity of irinotecan in chemotherapy regimens used in the clinic. METHODS: Anti-proliferative effects of single-agent AZD0156, the active metabolite of irinotecan (SN38), and combination therapy were evaluated in 12 CRC cell lines. Additional assessment with clonogenic assay, cell cycle analysis, and immunoblotting were performed in 4 selected cell lines. Four colorectal cancer patient derived xenograft (PDX) models were treated with AZD0156, irinotecan, or 5FU alone and in combination for assessment of tumor growth inhibition (TGI). Immunofluorescence was performed on tumor tissues. The DDR mutation profile was compared across in vitro and in vivo models. RESULTS: Enhanced effects on cellular proliferation and regrowth were observed with the combination of AZD0156 and SN38 in select models. In cell cycle analysis of these models, increased G2/M arrest was observed with combination treatment over either single agent. Immunoblotting results suggest an increase in DDR associated with irinotecan therapy, with a reduced effect noted when combined with AZD0156, which is more pronounced in some models. Increased TGI was observed with the combination of AZD0156 and irinotecan as compared to single-agent therapy in some PDX models. The DDR mutation profile was variable across models. CONCLUSIONS: AZD0156 and irinotecan provide a rational and active combination in preclinical colorectal cancer models. Variability across in vivo and in vitro results may be related to the variable DDR mutation profiles of the models evaluated. Further understanding of the implications of individual DDR mutation profiles may help better identify patients more likely to benefit from treatment with the combination of AZD0156 and irinotecan in the clinical setting.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Irinotecano/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Camptotecina , Proteínas Mutadas de Ataxia Telangiectasia/genética
4.
Mol Carcinog ; 59(10): 1227-1240, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816368

RESUMO

Chemoresistance to gemcitabine (GEM)-a frontline chemotherapeutic, resulting from its dysfunctional uptake and metabolism in cancer cells, is a major contributing factor for failed therapy in pancreatic cancer (PanC) patients. Therefore, there is an urgent need for agents that could reverse GEM resistance and allow continued chemosensitivity to the drug. We employed natural nontoxic agent (with anti-PanC potential) bitter melon juice (BMJ) and GEM to examine their combinatorial benefits against tumorigenesis of PanC patient-derived xenograft (PDX)-pancreatic ductal adenocarcinomas explants PDX272 (wild-type KRAS), PDX271 (mutant KRAS and SMAD4), and PDX266 (mutant KRAS). Anti-PanC efficacy of single agents vs combination in the three tumor explants, both at the end of active dosing regimen and following a drug-washout phase were compared. In animal studies, GEM alone treatment significantly inhibited PDX tumor growth, but effects were not sustained, as GEM-treated tumors exhibited regrowth posttreatment termination. However, combination-regimen displayed enhanced and sustained efficacy. Mechanistic assessments revealed that overcoming GEM resistance by coadministration with BMJ was possibly due to modulation of GEM transport/metabolism pathway molecules (ribonucleotide reductase regulatory subunit M1, human equilibrative nucleoside transporter 1, and deoxycytidine kinase). Study outcomes, highlighting significantly higher and sustained efficacy of GEM in combination with BMJ, make a compelling case for a clinical trial in PanC patients, wherein BMJ could be combined with GEM to target and overcome GEM resistance. In addition, given their specific effectiveness against KRAS-mutant tumors, this combination could be potentially beneficial to a broader PanC patient population.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Momordica charantia/química , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Desoxicitidina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
5.
BMC Cancer ; 20(1): 1063, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148223

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear ß-catenin signaling. The purpose of this study was to evaluate the ability of ß-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC. METHODS: Treatment with RX-5902, anti-PD-1, anti-CTLA-4 or the combination was investigated in BALB/c mice injected with the 4 T1 TNBC cell line. Humanized BALB/c-Rag2nullIl2rγnullSIRPαNOD (hu-CB-BRGS) mice transplanted with a human immune system were implanted with MDA-MB-231 cells. Mice were randomized into treatment groups according to human hematopoietic chimerism and treated with RX-5902, anti-PD-1 or the combination. At sacrifice, bone marrow, lymph nodes, spleen and tumors were harvested for flow cytometry analysis of human immune cells. RESULTS: The addition of RX-5902 to CTLA-4 or PD-1 inhibitors resulted in decreased tumor growth in the 4 T1 and human immune system and MDA-MB-231 xenograft models. Immunologic analyses demonstrated a significant increase in the number of activated T cells in tumor infiltrating lymphocytes (TILs) with RX-5902 treatment compared to vehicle (p < 0.05). In the RX-5902/nivolumab combination group, there was a significant increase in the percentage of CD4+ T cells in TILs and increased systemic granzyme B production (p < 0.01). CONCLUSIONS: Conclusions: RX-5902 enhanced the efficacy of nivolumab in a humanized, preclinical model of TNBC. Several changes in immunologic profiles were noted in mice treated with RX-5902 and the combination, including an increase in activated TILs and a decrease in human myeloid populations, that are often associated with immunosuppression in a tumor microenvironment. RX-5902 also was shown to potentiate the effects of checkpoint inhibitors of CTLA4 and the PD-1 inhibitor in the 4 T-1 murine TNBC model. These findings indicate that RX-5902 may have important immunomodulatory, as well as anti-tumor activity, in TNBC when combined with a checkpoint inhibitor.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Piperazinas/farmacologia , Quinoxalinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral/imunologia , beta Catenina/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
6.
BMC Cancer ; 18(1): 136, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402316

RESUMO

BACKGROUND: Polo-like kinase 1 (Plk1) is a serine/threonine kinase that is a key regulator of multiple stages of mitotic progression. Plk1 is upregulated in many tumor types including colorectal cancer (CRC) and portends a poor prognosis. TAK-960 is an ATP-competitive Plk1 inhibitor that has demonstrated efficacy across a broad range of cancer cell lines, including CRC. In this study, we investigated the activity of TAK-960 against a large collection of CRC models including 55 cell lines and 18 patient-derived xenografts. METHODS: Fifty-five CRC cell lines and 18 PDX models were exposed to TAK-960 and evaluated for proliferation (IC50) and Tumor Growth Inhibition Index, respectively. Additionally, 2 KRAS wild type and 2 KRAS mutant PDX models were treated with TAK-960 as single agent or in combination with cetuximab or irinotecan. TAK-960 mechanism of action was elucidated through immunoblotting and cell cycle analysis. RESULTS: CRC cell lines demonstrated a variable anti-proliferative response to TAK-960 with IC50 values ranging from 0.001 to > 0.75 µmol/L. Anti-proliferative effects were sustained after removal of drug. Following TAK-960 treatment a highly variable accumulation of mitotic (indicating cell cycle arrest) and apoptotic markers was observed. Cell cycle analysis demonstrated that TAK-960 treatment induced G2/M arrest and polyploidy. Six out of the eighteen PDX models responded to single agent TAK-960 therapy (TGII< 20). The addition of TAK-960 to standard of care chemotherapy resulted in largely additive antitumor effects. CONCLUSION: TAK-960 is an active anti-proliferative agent against CRC cell lines and PDX models. Collectively, these data suggest that TAK-960 may be of therapeutic benefit alone or in combination with other agents, although future work should focus on the development of predictive biomarkers and hypothesis-driven rational combinations.


Assuntos
Azepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido 4-Aminobenzoico/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Carga Tumoral/efeitos dos fármacos , Quinase 1 Polo-Like
7.
Anticancer Drugs ; 29(9): 827-838, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30048249

RESUMO

Cancer is a disease caused by several factors characterized by uncontrolled cell division, growth, and survival. ENMD-2076, is a novel orally active small molecule multikinase inhibitor targeting angiogenesis, proliferation, and the cell cycle. It is selectively active against the mitotic kinases aurora A and B, and kinases responsible for angiogenesis including VEGFR2/KDR and FGFR1 and 2. ENMD-2076 has been shown to inhibit tumor growth and prevent angiogenesis in vitro and in vivo in preclinical cancer models. Moreover, in a phase I trial, ENMD-2076 was well tolerated, exhibited a linear pharmacokinetic profile, and showed a promising antitumor activity in a number of solid tumors. In this study, we show that ENMD-2076 has antiproliferative effects, causes cell cycle arrest, and has activity in preclinical models of colorectal cancer (CRC), including patient-derived xenograft (PDX) models. Forty-seven human CRC cell lines were exposed in vitro to ENMD-2076 and analyzed for effects on cell cycle, apoptosis, and downstream effector proteins. The drug was then tested against 20 human CRC PDX models to further evaluate in-vivo antitumor activity. We show that ENMD-2076 exhibits a broad range of activity against a large panel of CRC cell lines with varying molecular characteristics. Mechanistically, ENMD-2076 exposure resulted in a G2/M cell cycle arrest, an increase in aneuploidy, and cell death in responsive cell lines. In addition, ENMD-2076 treatment resulted in a promising antitumor activity in CRC PDX models. These results support the continued development of ENMD-2076 in CRC including further exploration of rational combinations.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/enzimologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Invest New Drugs ; 35(1): 11-25, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27783255

RESUMO

Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma. Methods Melanoma cell lines and patient-derived tumor xenografts (PDTX) treated with pevonedistat were assessed for viability/apoptosis and tumor growth, respectively, to identify sensitive/resistant models. Gene expression microarray and gene set enrichment analyses were performed in cell lines to determine the expression profiles and pathways of sensitivity/resistance. Pharmacodynamic changes in treated-PDTX were also characterized. Results Pevonedistat effectively inhibited cell viability (IC50 < 0.3 µM) and induced apoptosis in a subset of melanoma cell lines. Sensitive and resistant cell lines exhibited distinct gene expression profiles; sensitive models were enriched for genes involved in DNA repair, replication and cell cycle regulation, while immune response and cell adhesion pathways were upregulated in resistant models. Pevonedistat also reduced tumor growth in melanoma cell line xenografts and PDTX with variable responses. An accumulation of pevonedistat-NEDD8 adduct and CDT1 was observed in sensitive tumors consistent with its mechanism of action. Conclusions This study provided preclinical evidence that NAE inhibition by pevonedistat has anti-tumor activity in melanoma and supports the clinical benefits observed in recent Phase 1 trials of this drug in melanoma patients. Further investigations are warranted to develop rational combinations and determine predictive biomarkers of pevonedistat.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Melanoma/tratamento farmacológico , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
9.
Int J Cancer ; 138(1): 195-205, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26152787

RESUMO

Dysregulation of the Notch1 receptor has been shown to facilitate the development and progression of colorectal cancer (CRC) and has been identified as an independent predictor of disease progression and worse survival. Although mutations in the NOTCH1 receptor have not been described in CRC, we have previously discovered a NOTCH1 gene copy number gain in a portion of CRC tumor samples. Here, we demonstrated that a NOTCH1 gene copy number gain is significantly associated with worse survival and a high percentage of gene duplication in a cohort of patients with advanced CRC. In our CRC patient-derived tumor xenograft (PDTX) model, tumors harboring a NOTCH1 gain exhibited significant elevation of the Notch1 receptor, JAG1 ligand and cleaved Notch1 activity. In addition, a significant association was identified between a gain in NOTCH1 gene copy number and sensitivity to a Notch1-targeting antibody. These findings suggest that patients with metastatic CRC that harbor a gain in NOTCH1 gene copy number have worse survival and that targeting this patient population with a Notch1 antibody may yield improved outcomes.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Variações do Número de Cópias de DNA , Dosagem de Genes , Receptor Notch1/genética , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores Tumorais , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Duplicação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica , Prognóstico , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Cancer ; 136(8): 1967-75, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25242168

RESUMO

Antiangiogenic therapy is commonly used for the treatment of colorectal cancer (CRC). Although patients derive some clinical benefit, treatment resistance inevitably occurs. The MET signaling pathway has been proposed to be a major contributor of resistance to antiangiogenic therapy. MET is upregulated in response to vascular endothelial growth factor pathway inhibition and plays an essential role in tumorigenesis and progression of tumors. In this study, we set out to determine the efficacy of cabozantinib in a preclinical CRC patient-derived tumor xenograft model. We demonstrate potent inhibitory effects on tumor growth in 80% of tumors treated. The greatest antitumor effects were observed in tumors that possess a mutation in the PIK3CA gene. The underlying antitumor mechanisms of cabozantinib consisted of inhibition of angiogenesis and Akt activation and significantly decreased expression of genes involved in the PI3K pathway. These findings support further evaluation of cabozantinib in patients with CRC. PIK3CA mutation as a predictive biomarker of sensitivity is intriguing and warrants further elucidation. A clinical trial of cabozantinib in refractory metastatic CRC is being activated.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adulto , Idoso , Inibidores da Angiogênese/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/metabolismo , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Sci Adv ; 10(29): eado1218, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018396

RESUMO

Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.


Assuntos
Neoplasias Colorretais , Retrovirus Endógenos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/virologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Retrovirus Endógenos/genética , Elementos Facilitadores Genéticos , Linhagem Celular Tumoral , Transcrição Gênica , Animais , Carcinogênese/genética , Redes Reguladoras de Genes
12.
Nat Comput Sci ; 4(3): 237-250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438786

RESUMO

Single-cell technologies enable high-resolution studies of phenotype-defining molecular mechanisms. However, data sparsity and cellular heterogeneity make modeling biological variability across single-cell samples difficult. Here we present SCORPION, a tool that uses a message-passing algorithm to reconstruct comparable gene regulatory networks from single-cell/nuclei RNA-sequencing data that are suitable for population-level comparisons by leveraging the same baseline priors. Using synthetic data, we found that SCORPION outperformed 12 existing gene regulatory network reconstruction techniques. Using supervised experiments, we show that SCORPION can accurately identify differences in regulatory networks between wild-type and transcription factor-perturbed cells. We demonstrate SCORPION's scalability to population-level analyses using a single-cell RNA-sequencing atlas containing 200,436 cells from colorectal cancer and adjacent healthy tissues. The differences between tumor regions detected by SCORPION are consistent across multiple cohorts as well as with our understanding of disease progression, and elucidate phenotypic regulators that may impact patient survival.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Perfilação da Expressão Gênica , Algoritmos , RNA
13.
PLoS One ; 19(4): e0298808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598488

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Via de Sinalização Wnt , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Organoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Clin Cancer Res ; 30(17): 3768-3778, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38869830

RESUMO

PURPOSE: In this single-institution phase II investigator-initiated study, we assessed the ability of MAPK and VEGF pathway blockade to overcome resistance to immunotherapy in microsatellite-stable metastatic colorectal cancer (MSS mCRC). PATIENTS AND METHODS: Patients with MSS, BRAF wild-type mCRC who progressed on ≥2 prior lines of therapy received pembrolizumab, binimetinib, and bevacizumab until disease progression or unacceptable toxicity. After a safety run-in, patients were randomized to a 7-day run-in of binimetinib or simultaneous initiation of all study drugs, to explore whether MEK inhibition may increase tumor immunogenicity. The primary endpoint was objective response rate (ORR) in all patients combined (by Response Evaluation Criteria in Solid Tumors v1.1). RESULTS: Fifty patients received study drug treatment; 54% were male with a median age of 55 years (range, 31-79). The primary endpoint, ORR, was 12.0% [95% confidence interval (CI) 4.5%-24.3%], which was not statistically different than the historical control data of 5% (P = 0.038, exceeding prespecified threshold of 0.025). The disease control rate was 70.0% (95% CI, 55.4%-82.1%), the median progression-free survival 5.9 months (95% CI, 4.2-8.7 months), and the median overall survival 9.3 months (95% CI, 6.7-12.2 months). No difference in efficacy was observed between the randomized cohorts. Grade 3 and 4 adverse events were observed in 56% and 8% of patients, respectively; the most common were rash (12%) and increased aspartate aminotransferase (12%). CONCLUSIONS: Pembrolizumab, binimetinib, and bevacizumab failed to meet its primary endpoint of higher ORR compared with historical control data, demonstrated a high disease control rate, and demonstrated acceptable tolerability in refractory MSS mCRC.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Benzimidazóis , Bevacizumab , Neoplasias Colorretais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Bevacizumab/administração & dosagem , Bevacizumab/uso terapêutico , Bevacizumab/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Benzimidazóis/administração & dosagem , Benzimidazóis/uso terapêutico , Benzimidazóis/efeitos adversos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Repetições de Microssatélites , Resultado do Tratamento
15.
Cancer Res Commun ; 3(9): 1899-1911, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37772994

RESUMO

Defining feature of pancreatic ductal adenocarcinoma (PDAC) that participates in the high mortality rate and drug resistance is the immune-tolerant microenvironment which enables tumors to progress unabated by adaptive immunity. In this study, we report that PDAC cells release CSF-1 to induce nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) activation in myeloid cells. Increased NLRP3 expression was found in the pancreas of patients with PDAC when compared with normal pancreas which correlated with the formation of the NLRP3 inflammasome. Using human primary cells and an orthotopic PDAC mouse model, we show that NLRP3 activation is responsible for the maturation and release of the inflammatory cytokine IL1ß which selectively drives Th2-type inflammation via COX2/PGE2 induction. As a result of this inflammation, primary tumors were characterized by reduced cytotoxic CD8+ T-cell activation and increased tumor expansion. Genetic deletion and pharmacologic inhibition of NLRP3 enabled the development of Th1 immunity, increased intratumoral levels of IL2, CD8+ T cell­mediated tumor suppression, and ultimately limited tumor growth. In addition, we observed that NLRP3 inhibition in combination with gemcitabine significantly increased the efficacy of the chemotherapy. In conclusion, this study provides a mechanism by which tumor-mediated NLRP3 activation exploits a distinct adaptive immunity response that facilitates tumor escape and progression. Considering the ability to block NLRP3 activity with safe and small orally active molecules, this protein represents a new promising target to improve the limited therapeutic options in PDAC. SIGNIFICANT: This study provides novel molecular insights on how PDAC cells exploit NLRP3 activation to suppress CD8 T-cell activation. From a translational perspective, we demonstrate that the combination of gemcitabine with the orally active NLRP3 inhibitor OLT1177 increases the efficacy of monotherapy.

16.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591990

RESUMO

Reversing the immunosuppressive nature of the tumor microenvironment is critical for the successful treatment of cancers with immunotherapy drugs. Murine cancer models are extremely limited in their diversity and suffer from poor translation to the clinic. To serve as a more physiological preclinical model for immunotherapy studies, this protocol has been developed to evaluate the treatment of human tumors in a mouse reconstituted with a human immune system. This unique protocol demonstrates the development of human immune system (HIS, "humanized") mice, followed by implantation of a human tumor, either a cell-line derived xenograft (CDX) or a patient derived xenograft (PDX). HIS mice are generated by injecting CD34+ human hematopoietic stem cells isolated from umbilical cord blood into neonatal BRGS (BALB/c Rag2-/- IL2RγC-/- NODSIRPα) highly immunodeficient mice that are also capable of accepting a xenogeneic tumor. The importance of the kinetics and characteristics of the human immune system development and tumor implantation is emphasized. Finally, an in-depth evaluation of the tumor microenvironment using flow cytometry is described. In numerous studies using this protocol, it was found that the tumor microenvironment of individual tumors is recapitulated in HIS-PDX mice; "hot" tumors exhibit large immune infiltration while "cold" tumors do not. This model serves as a testing ground for combination immunotherapies for a wide range of human tumors and represents an important tool in the quest for personalized medicine.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD , Neoplasias/patologia , Transplante Heterólogo , Imunoterapia/métodos , Modelos Animais de Doenças , Microambiente Tumoral
17.
Front Oncol ; 12: 877635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419897

RESUMO

Immune checkpoint inhibitors have been found to be effective in metastatic MSI-high colorectal cancers (CRC), however, have no efficacy in microsatellite stable (MSS) cancers, which comprise the majority of mCRC cases. Cabozantinib is a small molecule multi-tyrosine kinase inhibitor that is FDA approved in advanced renal cell, medullary thyroid, and hepatocellular carcinoma. Using Human Immune System (HIS) mice, we tested the ability of cabozantinib to prime MSS-CRC tumors to enhance the potency of immune checkpoint inhibitor nivolumab. In four independent experiments, we implanted distinct MSS-CRC patient-derived xenografts (PDXs) into the flanks of humanized BALB/c-Rag2nullIl2rγnullSirpαNOD (BRGS) mice that had been engrafted with human hematopoietic stem cells at birth. For each PDX, HIS-mice cohorts were treated with vehicle, nivolumab, cabozantinib, or the combination. In three out of the four models, the combination had a lower tumor growth rate compared to vehicle or nivolumab-treated groups. Furthermore, interrogation of the HIS in immune organs and tumors by flow cytometry revealed increased Granzyme B+, TNFα+ and IFNγ+ CD4+ T cells among the human tumor infiltrating leukocytes (TIL) that correlated with reduced tumor growth in the combination-treated HIS-mice. Notably, slower growth correlated with increased expression of the CD4+ T cell ligand, HLA-DR, on the tumor cells themselves. Finally, the cabozantinib/nivolumab combination was tested in comparison to cobimetinib/atezolizumab. Although both combinations showed tumor growth inhibition, cabozantinib/nivolumab had enhanced cytotoxic IFNγ and TNFα+ T cells. This pre-clinical in vivo data warrants testing the combination in clinical trials for patients with MSS-CRC.

18.
Mol Cancer Ther ; 21(3): 397-406, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965958

RESUMO

Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179. OKI-179 and its cell active predecessor OKI-005 are thioester prodrugs of the active metabolite OKI-006, a unique congener of the natural product HDAC inhibitor largazole. OKI-006, OKI-005, and subsequently OKI-179, were developed through a lead candidate optimization program designed to enhance physiochemical properties without eroding potency and selectivity relative to largazole. OKI-005 displays antiproliferative activity in vitro with induction of apoptosis and increased histone acetylation, consistent with target engagement. OKI-179 showed antitumor activity in preclinical cancer models with a favorable pharmacokinetic profile and on-target pharmacodynamic effects. Based on its potency, desirable class I HDAC inhibition profile, oral bioavailability, and efficacy against a broad range of solid tumors, OKI-179 is currently being evaluated in a first-in-human phase I clinical trial with plans for continued clinical development in solid tumor and hematologic malignancies.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Acetilação , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico
19.
Mol Cancer Ther ; 20(10): 2049-2060, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376578

RESUMO

There is a clear need to identify targetable drivers of resistance and potential biomarkers for salvage therapy for patients with melanoma refractory to the combination of BRAF and MEK inhibition. In this study, we performed whole-exome sequencing on BRAF-V600E-mutant melanoma patient tumors refractory to the combination of BRAF/MEK inhibition and identified acquired oncogenic mutations in NRAS and loss of the tumor suppressor gene CDKN2A We hypothesized the acquired resistance mechanisms to BRAF/MEK inhibition were reactivation of the MAPK pathway and activation of the cell-cycle pathway, which can both be targeted pharmacologically with the combination of a MEK inhibitor (trametinib) and a CDK4/6 inhibitor (palbociclib). In vivo, we found that combination of CDK4/6 and MEK inhibition significantly decreased tumor growth in two BRAF/MEK inhibitor-resistant patient-derived xenograft models. In vitro, we observed that the combination of CDK4/6 and MEK inhibition resulted in synergy and significantly reduced cellular growth, promoted cell-cycle arrest, and effectively inhibited downstream signaling of MAPK and cell-cycle pathways in BRAF inhibitor-resistant cell lines. Knockdown of CDKN2A in BRAF inhibitor-resistant cells increased sensitivity to CDK4/6 inhibition alone and in combination with MEK inhibition. A key implication of our study is that the combination of CDK4/6 and MEK inhibitors overcomes acquired resistance to BRAF/MEK inhibitors, and loss of CDKN2A may represent a biomarker of response to the combination. Inhibition of the cell-cycle and MAPK pathway represents a promising strategy for patients with metastatic melanoma who are refractory to BRAF/MEK inhibitor therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , MAP Quinase Quinase 1/antagonistas & inibidores , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Aminopiridinas/administração & dosagem , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Pirróis/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Oncol ; 11: 642328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869031

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with high incidences of p53 mutations. AZD1775 (adavosertib, previously MK-1775) is a small molecule WEE1 inhibitor that abrogates the G2M checkpoint and can potentially synergize with DNA damaging therapies commonly used in PDAC treatment. The purpose of this study was to identify combination partners for AZD1775, including standard chemotherapy or targeted agents, in PDAC preclinical models. Low powered preliminary screens demonstrated that two of the four PDX models responded better to the combinations of AZD1775 with irinotecan or capecitabine than to either single agent. Following the screens, two full powered PDAC PDX models of differing p53 status were tested with the combinations of AZD1775 and irinotecan or capecitabine. The combinations of AZD1775 and SN38 or 5-FU were also tested on PDAC cell lines. Cellular proliferation was measured using an IncuCyte Live Cell Imager and apoptosis was measured using a Caspase-Glo 3/7 assay. Flow cytometry was conducted to measure alterations in cell cycle distribution. Western blot analysis was used to determine the effects of the drug combinations on downstream effectors. In PDX models with mutated p53 status, there was significant tumor growth inhibition from the combination of AZD1775 with irinotecan or capecitabine (P ≤ 0.03), while PDX models with wild type p53 did not show anti-tumor synergy from the same combinations (P ≥ 0.08). The combination of AZD1775 with SN38 or 5-FU significantly decreased proliferation in all PDAC cell lines, and enhanced apoptosis in multiple cell lines. Cell cycle distribution was disrupted from the combination of AZD1775 with SN38 or 5-FU which was recorded as G2M arrest and decreased G1 phase. AZD1775 inhibited phospho-CDC2 and increased the expression of γH2AX that was either maintained or enhanced after combination with SN38 or 5-FU. The combination of AZD1775 with irinotecan/SN38 or capecitabine/5-FU showed anti-tumor effects in vivo and in vitro in PDAC models. These results support further investigation for these combination strategies to enhance outcomes for PDAC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA