RESUMO
Background: Antenatal anemia is a risk factor for adverse maternal and fetal outcomes and is prevalent in sub-Saharan Africa. Less than half of antenatal anemia is considered responsive to iron; identifying women in need of iron may help target interventions. Iron absorption is governed by the iron-regulatory hormone hepcidin.Objective: We sought to characterize changes in hepcidin and its associations with indexes of iron stores, erythropoiesis, and inflammation at weeks 14, 20, and 30 of gestation and to assess hepcidin's diagnostic potential as an index of iron deficiency.Methods: We measured hemoglobin and serum hepcidin, ferritin, soluble transferrin receptor (sTfR), and C-reactive protein (CRP) at 14, 20, and 30 wk of gestation in a cohort of 395 Gambian women recruited to a randomized controlled trial. Associations with hepcidin were measured by using linear regression, and hepcidin's diagnostic test accuracy [area under the receiver operating characteristic curve (AUCROC), sensitivity, specificity, cutoffs] for iron deficiency at each time point was analyzed.Results: The prevalence of anemia increased from 34.6% at 14 wk of gestation to 50.0% at 20 wk. Hepcidin concentrations declined between study enrollment and 20 wk, whereas ferritin declined between 20 and 30 wk of gestation. The variations in hepcidin explained by ferritin, sTfR, and CRP declined over pregnancy. The AUCROC values for hepcidin to detect iron deficiency (defined as ferritin <15 µg/L) were 0.86, 0.83, and 0.84 at 14, 20, and 30 wk, respectively. Hepcidin was superior to hemoglobin and sTfR as an indicator of iron deficiency.Conclusions: In Gambian pregnant women, hepcidin appears to be a useful diagnostic test for iron deficiency and may enable the identification of cases for whom iron would be beneficial. Hepcidin suppression in the second trimester suggests a window for optimal timing for antenatal iron interventions. Hemoglobin does not effectively identify iron deficiency in pregnancy. This trial was registered at www.isrctn.com as ISRCTN49285450.
Assuntos
Anemia Ferropriva/diagnóstico , Hepcidinas/sangue , Deficiências de Ferro , Complicações na Gravidez/diagnóstico , Adulto , Anemia Ferropriva/sangue , Anemia Ferropriva/complicações , Anemia Ferropriva/epidemiologia , Área Sob a Curva , Proteína C-Reativa/metabolismo , Estudos de Coortes , Eritropoese , Feminino , Ferritinas/sangue , Gâmbia/epidemiologia , Idade Gestacional , Hemoglobinas/metabolismo , Humanos , Inflamação/sangue , Ferro/sangue , Estudos Longitudinais , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/epidemiologia , Prevalência , Curva ROC , Receptores da Transferrina/sangue , Sensibilidade e Especificidade , Adulto JovemRESUMO
BACKGROUND: Until recently, WHO recommended daily iron supplementation for all pregnant women (60 mg/d iron combined with 400ug/d folic acid) where anaemia rates exceeded 40 %. Recent studies indicate that this may pose a risk to pregnant women. Therefore, there is a need to explore screen-and-treat options to minimise iron exposure during pregnancy using an overall lower dosage of iron that would achieve equivalent results as being currently recommended by the WHO. However, there is a lack of agreement on how to best assess iron deficiency when infections are prevalent. Here, we test the use of hepcidin a peptide hormone and key regulator of iron metabolism, as a potential index for 'safe and ready to receive' iron. DESIGN/METHODS: This is a 3-arm randomised-controlled proof-of-concept trial. We will test the hypothesis that a screen-and-treat approach to iron supplementation using a pre-determined hepcidin cut-off value of <2.5 ng/ml will achieve similar efficacy in preventing iron deficiency and anaemia at a lower iron dose and hence will improve safety. A sample of 462 pregnant women in rural Gambia will be randomly assigned to receive: a) UNU/UNICEF/WHO international multiple micronutrient preparation (UNIMMAP) containing 60 mg/d iron (reference arm); b) UNIMMAP containing 60 mg/d iron but based on a weekly hepcidin screening indicating if iron can be given for the next 7 days or not; c) or UNIMMAP containing 30 mg/d iron as in (b) for 12 weeks in rural Gambia. The study will test if the screen-and-treat approach is non-inferior to the reference arm using the primary endpoint of haemoglobin levels at a non-inferiority margin of 0.5 g/dl. Secondary outcomes of adverse effects, compliance and the impact of iron supplementation on susceptibility to infections will also be assessed. DISCUSSION: This trial is expected to contribute towards minimising the exposure of pregnant women to iron that may not be needed and therefore potentially harmful. If the evidence in this study shows that the overall lower dosage of iron is non-inferior to 60 mg/day iron, this may help decrease side-effects, improve compliance and increase safety. The potential for the use of hepcidin for a simple point-of-care (PoC) diagnostic for when it is most safe and effective to give iron may improve maternal health outcomes. TRIAL REGISTRATION: ISRCTN21955180.
Assuntos
Anemia Ferropriva/terapia , Suplementos Nutricionais , Hepcidinas/sangue , Ferro/administração & dosagem , Complicações na Gravidez/terapia , Oligoelementos/administração & dosagem , Adulto , Anemia Ferropriva/sangue , Anemia Ferropriva/diagnóstico , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Gâmbia , Humanos , Testes para Triagem do Soro Materno , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/diagnóstico , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: Iron deficiency prevalence rates frequently exceed 50 % in young children in low-income countries. The World Health Organization (WHO) recommended universal supplementation of young children where anaemia rates are >40 %. However, large randomized trials have revealed that provision of iron to young children caused serious adverse effects because iron powerfully promotes microbial growth. Hepcidin - the master regulator of iron metabolism that integrates signals of infection and iron deficiency - offers the possibility of new solutions to diagnose and combat global iron deficiency. We aim to evaluate a hepcidin-screening-based iron supplementation intervention using hepcidin cut-offs designed to indicate that an individual requires iron, is safe to receive it and will absorb it. METHODS: The study is a proof-of-concept, three-arm, double blind, randomised controlled, prospective, parallel-group non-inferiority trial. Children will be randomised to receive, for a duration of 12 weeks, one of three multiple micronutrient powders (MNP) containing: A) 12 mg iron daily; B) 12 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not; C) 6 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not. The inclusion criteria are age 6-23 months, haemoglobin (Hb) concentration between 7 and 11 g/dL, z-scores for Height-for-Age, Weight-for-Age and Weight-for-Height > -3 SD and free of malaria. Hb concentration at 12 weeks will be used to test whether the screen-and-treat approaches are non-inferior to universal supplementation. Safety will be assessed using caregiver reports of infections, in vitro bacterial and P. falciparum growth assays and by determining the changes in the gut microbiota during the study period. DISCUSSION: A screen-and-treat approach using hepcidin has the potential to make iron administration safer in areas with widespread infections. If this proof-of-concept study shows promising results the development of a point-of-care diagnostic test will be the next step. TRIAL REGISTRATION: ISRCTN07210906 , 07/16/2014.
Assuntos
Anemia Ferropriva/diagnóstico , Anemia Ferropriva/tratamento farmacológico , Suplementos Nutricionais , Compostos Ferrosos/administração & dosagem , Hepcidinas/sangue , Micronutrientes/administração & dosagem , Serviços de Saúde Rural , Anemia Ferropriva/sangue , Biomarcadores/sangue , Protocolos Clínicos , Países em Desenvolvimento , Método Duplo-Cego , Feminino , Compostos Ferrosos/uso terapêutico , Seguimentos , Gâmbia , Hemoglobinas/metabolismo , Humanos , Lactente , Masculino , Programas de Rastreamento/métodos , Micronutrientes/uso terapêutico , Estudos Prospectivos , Saúde da População RuralRESUMO
BACKGROUND: Iron deficiency is the most prevalent nutritional disorder worldwide. Iron supplementation has modest efficacy, causes gastrointestinal side-effects that limit compliance, and has been associated with serious adverse outcomes in children across low-income settings. We aimed to compare two hepcidin-guided screen-and-treat regimens designed to reduce overall iron dosage by targeting its administration to periods when children were safe and ready to receive iron supplementation, with WHO's recommendation of universal iron supplementation. METHODS: We conducted an individually randomised, three-arm, double-blind, controlled, proof-of-concept, non-inferiority trial in 12 rural communities across The Gambia. Eligible participants were children aged 6-23 months with anaemia. Participants were randomly assigned (1:1:1) to either the WHO recommended regimen of one sachet of multiple micronutrient powder (MMP) daily containing 12·0 mg iron as encapsulated ferrous fumarate (control group); to MMP with 12·0 mg per day iron for the next 7 days if plasma hepcidin concentration was less than 5·5 µg/L, or to MMP without iron for the next 7 days if plasma hepcidin concentration was at least 5·5 µg/L (12 mg screen-and-treat group); or to MMP with 6·0 mg per day iron for the next 7 days if plasma hepcidin concentration was less than 5·5 µg/L, or to MMP without iron for the next 7 days if plasma hepcidin concentration was at least 5·5 µg/L (6 mg screen-and-treat group). Randomisation was done by use of a permuted block design (block size of 9), with stratification by haemoglobin and age, using computer-generated numbers. Participants and the research team (except for the data manager) were masked to group allocation. The primary outcome was haemoglobin concentration, with a non-inferiority margin of -5 g/L. A per-protocol analysis, including only children who had consumed at least 90% of the supplements (ie, supplement intake on ≥75 days during the study), was done to assess non-inferiority of the primary outcome at day 84 using a one-sided t test adjusted for multiple comparisons. Safety was assessed by use of ex-vivo growth tests of Plasmodium falciparum in erythrocytes and three species of sentinel bacteria in plasma samples from participants. This trial is registered with the ISRCTN registry, ISRCTN07210906. FINDINGS: Between April 23, 2014, and Aug 7, 2015, we prescreened 783 children, of whom 407 were enrolled into the study: 135 were randomly assigned to the control group, 136 to the 12 mg screen-and-treat group, and 136 to the 6 mg screen-and-treat group. 345 (85%) children were included in the per-protocol population: 115 in the control group, 116 in the 12 mg screen-and-treat group, and 114 in the 6 mg screen-and-treat group. Directly observed adherence was high across all groups (control group 94·8%, 12 mg screen-and-treat group 95·3%, and 6 mg screen-and-treat group 95·0%). 82 days of iron supplementation increased mean haemoglobin concentration by 7·7 g/L (95% CI 3·2 to 12·2) in the control group. Both screen-and-treat regimens were significantly less efficacious at improving haemoglobin (-5·6 g/L [98·3% CI -9·9 to -1·3] in the 12 mg screen-and-treat group and -7·8 g/L [98·3% CI -12·2 to -3·5] in the 6 mg screen-and-treat group) and neither regimen met the preset non-inferiority margin of -5 g/L. The 12 mg screen-and-treat regimen reduced iron dosage to 6·1 mg per day and the 6 mg screen-and-treat regimen reduced dosage to 3·0 mg per day. 580 adverse events were observed in 316 participants, of which eight were serious adverse events requiring hospitalisation mainly due to diarrhoeal disease (one [1%] participant in the control group, three [2%] in the 12 mg screen-and-treat group, and four [3%] in the 6 mg screen-and-treat group). The most common causes of non-serious adverse events (n=572) were diarrhoea (145 events [25%]), upper respiratory tract infections (194 [34%]), lower respiratory tract infections (62 [11%]), and skin infections (122 [21%]). No adverse events were deemed to be related to the study interventions. INTERPRETATION: The hepcidin-guided screen-and-treat strategy to target iron administration succeeded in reducing overall iron dosage, but was considerably less efficacious at increasing haemoglobin and combating iron deficiency and anaemia than was WHO's standard of care, and showed no differences in morbidity or safety outcomes. FUNDING: Bill & Melinda Gates Foundation and UK Medical Research Council.
Assuntos
Anemia Ferropriva , Deficiências de Ferro , Humanos , Criança , Pré-Escolar , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/tratamento farmacológico , Hepcidinas , Gâmbia , Ferro/uso terapêutico , HemoglobinasRESUMO
Iron deficiency anemia (IDA) is the most prevalent nutritional condition worldwide. We studied the contribution of hepcidin-mediated iron blockade to IDA in African children. We measured hepcidin and hemoglobin weekly, and hematological, inflammatory, and iron biomarkers at baseline, 7 weeks, and 12 weeks in 407 anemic (hemoglobin < 11 g/dl), otherwise healthy Gambian children (6 to 27 months). Each child maintained remarkably constant hepcidin levels (P < 0.0001 for between-child variance), with half consistently maintaining levels that indicate physiological blockade of iron absorption. Hepcidin was strongly predicted by nurse-ascribed adverse events with dominant signals from respiratory infections and fevers (all P < 0.0001). Diarrhea and fecal calprotectin were not associated with hepcidin. In multivariate analysis, C-reactive protein was the dominant predictor of hepcidin and contributed to iron blockade even at very low levels. We conclude that even low-grade inflammation, especially associated with respiratory infections, contributes to IDA in African children.
Assuntos
Anemia Ferropriva/sangue , Hepcidinas/sangue , Ferro/metabolismo , Infecções Respiratórias/fisiopatologia , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/fisiopatologia , Biomarcadores/sangue , Proteína C-Reativa/análise , Pré-Escolar , Feminino , Gâmbia , Humanos , Lactente , Inflamação/sangue , Inflamação/fisiopatologia , Ferro/farmacocinética , Masculino , Análise Multivariada , Infecções Respiratórias/sangueRESUMO
BACKGROUND: WHO recommends daily iron supplementation for pregnant women, but adherence is poor because of side-effects, effectiveness is low, and there are concerns about possible harm. The iron-regulatory hormone hepcidin can signal when an individual is ready-and-safe to receive iron. We tested whether a hepcidin-guided screen-and-treat approach to combat iron-deficiency anaemia could achieve equivalent efficacy to universal administration, but with lower exposure to iron. METHODS: We did a three-arm, randomised, double-blind, non-inferiority trial in 19 rural communities in the Jarra West and Kiang East districts of The Gambia. Eligible participants were pregnant women aged 18-45 years at between 14 weeks and 22 weeks of gestation. We randomly allocated women to either WHO's recommended regimen (ie, a daily UN University, UNICEF, and WHO international multiple-micronutrient preparation [UNIMMAP] containing 60 mg iron), a 60 mg screen-and-treat approach (ie, daily UNIMMAP containing 60 mg iron for 7 days if weekly hepcidin was <2·5 µg/L or UNIMMAP without iron if hepcidin was ≥2·5 µg/L), or a 30 mg screen-and-treat approach (ie, daily UNIMMAP containing 30 mg iron for 7 days if weekly hepcidin was <2·5 µg/L or UNIMMAP without iron if hepcidin was ≥2·5 µg/L). We used a block design stratified by amount of haemoglobin at enrolment (above and below the median amount of haemoglobin on every enrolment day) and stage of gestation (14-18 weeks vs 19-22 weeks). Participants and investigators were unaware of the random allocation. The primary outcome was the amount of haemoglobin at day 84 and was measured as the difference in haemoglobin in each screen-and-treat group compared with WHO's recommended regimen; the non-inferiority margin was set at -5·0 g/L. The primary outcome was assessed in the per-protocol population, which comprised all women who completed the study. This trial is registered with the ISRCTN registry, number ISRCTN21955180. FINDINGS: Between June 16, 2014, and March 3, 2016, 498 participants were randomised, of whom 167 were allocated to WHO's recommended regimen, 166 were allocated to the 60 mg per day screen-and-treat approach, and 165 were allocated to the 30 mg per day screen-and-treat approach. 78 participants were withdrawn or lost to follow-up during the study; thus, the per-protocol population comprised 140 women assigned to WHO's recommended regimen, 133 allocated to the 60 mg screen-and-treat approach, and 147 allocated to the 30 mg screen-and-treat approach. The screen-and-treat approaches did not exceed the non-inferiority margin. Compared with WHO's recommended regimen, the difference in the amount of haemoglobin at day 84 was -2·2 g/L (95% CI -4·6 to 0·1) with the 60 mg screen-and-treat approach and -2·7 g/L (-5·0 to -0·5) with the 30 mg screen-and-treat approach. Adherence, reported side-effects, and adverse events were similar between the three groups. The most frequent side-effect was stomachache, which was similar in the 60 mg screen-and-treat group (82 cases per 1906 person-weeks) and with WHO's recommended regimen (81 cases per 1974 person-weeks; effect 1·0, 95% CI 0·7 to 1·6); in the 30 mg screen-and-treat group the frequency of stomachache was slightly lower than with WHO's recommended regimen (58 cases per 2009 person-weeks; effect 0·7, 95% CI 0·5 to 1·1). No participants died during the study. INTERPRETATION: The hepcidin-guided screen-and-treat approaches had no advantages over WHO's recommended regimen in terms of adherence, side-effects, or safety outcomes. Our results suggest that the current WHO policy for iron administration to pregnant women should remain unchanged while more effective approaches continue to be sought. FUNDING: Bill & Melinda Gates Foundation and the UK Medical Research Council.
Assuntos
Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Hepcidinas/sangue , Ferro/administração & dosagem , Complicações Hematológicas na Gravidez/sangue , Complicações Hematológicas na Gravidez/tratamento farmacológico , Oligoelementos/administração & dosagem , Adulto , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Gâmbia , Hepcidinas/efeitos dos fármacos , Humanos , Ferro/farmacologia , Programas de Rastreamento , Gravidez , Oligoelementos/farmacologia , Resultado do Tratamento , Adulto JovemRESUMO
Anaemia and malaria are both common in pregnant women in Sub-Saharan Africa. Previous evidence has shown that iron supplementation may increase malaria risk. In this observational cohort study, we evaluated P. falciparum pathogenesis in vitro in RBCs from pregnant women during their 2nd and 3rd trimesters. RBCs were collected and assayed before (n = 327), 14 days (n = 82), 49 days (n = 112) and 84 days (n = 115) after iron supplementation (60 mg iron as ferrous fumarate daily). P. falciparum erythrocytic stage growth in vitro is reduced in anaemic pregnant women at baseline, but increased during supplementation. The elevated growth rates parallel increases in circulating CD71-positive reticulocytes and other markers of young RBCs. We conclude that Plasmodium growth in vitro is associated with elevated erythropoiesis, an obligate step towards erythroid recovery in response to supplementation. Our findings support current World Health Organization recommendations that iron supplementation be given in combination with malaria prevention and treatment services in malaria endemic areas.