Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bull Environ Contam Toxicol ; 106(6): 1024-1032, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33991212

RESUMO

Tannery wastewater is a significant cause of chromium (Cr) contamination in land and water. This study assessed Cr contamination caused by the discharge of tannery wastewater in the Dhaleshwari River and identified possible native plants for phytoremediation of Cr. Water, soil and sediments samples were collected from upstream and downstream of the wastewater discharge channel of Savar tannery industrial estate situated on the bank of the river. Samples of root, stem, leaf and fruit of four selected plants (i.e., Eichhornia crassipes, Xanthium strumarium L., Cynodon dactylon, Croton bonplandianum Baill.) were also collected from those sampling points. The total Cr in acid digested samples were determined by flame atomic absorption spectrometry. High concentrations of Cr were detected in the water, soil and sediment samples collected near the wastewater discharge channel. Of all the plant species, Xanthium strumarium L. exhibited high translocation factors (TF) and bioconcentration factors (BCF) for Cr. Based on the findings of this study Xanthium strumarium L. is preferable as a native species for phytoremediation of Cr.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Bangladesh , Biodegradação Ambiental , Cromo/análise , Resíduos Industriais/análise , Rios , Poluentes do Solo/análise , Curtume , Poluentes Químicos da Água/análise
2.
Appl Microbiol Biotechnol ; 101(3): 963-976, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28074219

RESUMO

Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research.


Assuntos
Bactérias/metabolismo , Recuperação e Remediação Ambiental , Mercúrio , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Bactérias/genética , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Cadeia Alimentar , Mercúrio/metabolismo , Poluentes Químicos da Água
3.
Environ Sci Pollut Res Int ; 31(15): 22759-22773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409383

RESUMO

Petroleum hydrocarbon (PHC) contamination is a widespread and severe environmental issue affecting many countries' resource sectors. PHCs are mixtures of hydrocarbon compounds with varying molar masses that naturally attenuate at different rates. Lighter fractions attenuate first, followed by medium-molar-mass constituents, while larger molecules remain for longer periods. This results in significant regulatory challenges concerning residual hydrocarbons in long-term contaminated soils. This study examined the potential risks associated with residual PHC and its implications for risk-based management of heavily contaminated soils (23,000-26,000 mg PHC/kg). Ecotoxicological properties, such as seedling emergence and growth of two native plant species-small Flinders grass (Iseilema membranaceum) and ruby saltbush (Enchylaena tomentosa)-and earthworm survival tests in PHC-contaminated soils, were assessed. Additionally, the effects of aging on the attenuation of PHC in contaminated soils were evaluated. Toxicity responses of plant growth parameters were determined as no-observed-effect concentrations: 75%-100% for seedling emergence, < 25%-75% for plant shoot height, and 75%-100% for earthworm survival. After 42 weeks of aging, the total PHC levels in weathered soils decreased by 14% to 30% and by 67% in diesel-spiked soil due to natural attenuation. Dehydrogenase enzyme activity in soils increased during the initial aging period. Furthermore, a clear shift of bacterial communities was observed in the soils following aging, including enrichment of PHC-resistant and -utilizing bacteria-for example, Nocardia sp. This study underscores the potential of natural attenuation for eco-friendly and cost-effective soil management, underlining that its success depends on site-specific factors like water content and nutrient availability. Therefore, we recommend detailed soil assessments to evaluate these conditions prior to adopting a risk-based management approach.


Assuntos
Petróleo , Poluentes do Solo , Poluentes do Solo/análise , Hidrocarbonetos/análise , Poluição Ambiental , Solo , Monitoramento Ambiental/métodos , Petróleo/análise , Bactérias , Biodegradação Ambiental , Microbiologia do Solo
4.
Biodegradation ; 23(6): 803-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22760225

RESUMO

A new arsenite-oxidizing bacterium was isolated from a low arsenic-containing (8.8 mg kg(-1)) soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Stenotrophomonas panacihumi. Batch experiment results showed that the strain completely oxidized 500 µM of arsenite to arsenate within 12 h of incubation in a minimal salts medium. The optimum initial pH range for arsenite oxidation was 5-7. The strain was found to tolerate as high as 60 mM arsenite in culture media. The arsenite oxidase gene was amplified by PCR with degenerate primers. The deduced amino acid sequence showed the highest identity (69.1 %) with the molybdenum containing large subunit of arsenite oxidase derived from Bosea sp. Furthermore the amino acids involved in binding the substrate arsenite, were conserved with the arsenite oxidases of other arsenite oxidizing bacteria such as Alcaligenes feacalis and Herminnimonas arsenicoxydans. To our knowledge, this study constitutes the first report on arsenite oxidation using Stenotrophomonas sp. and the strain has great potential for application in arsenic remediation of contaminated water.


Assuntos
Arsênio/metabolismo , Arsenitos/metabolismo , Microbiologia do Solo , Stenotrophomonas/isolamento & purificação , Sequência de Aminoácidos , Arsênio/toxicidade , Biodegradação Ambiental/efeitos dos fármacos , Carbono/farmacologia , Genes Bacterianos/genética , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Oxirredutases/química , Oxirredutases/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/genética , Stenotrophomonas/crescimento & desenvolvimento
5.
ACS Omega ; 7(1): 101-117, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036682

RESUMO

Arsenic (As) is a dangerous contaminant in drinking water which displays cogent health risks to humans. Effective clean-up approaches must be developed. However, the knowledge of adsorption-desorption behavior of As on modified biochars is limited. In this study, the adsorption-desorption behavior of arsenate (AsV) by single iron (Fe) and binary zirconium-iron (Zr-Fe)-modified biosolid biochars (BSBC) was investigated. For this purpose, BSBC was modified using Fe-chips (FeBSBC), Fe-salt (FeCl3BSBC), and Zr-Fe-salt (Zr-FeCl3BSBC) to determine the adsorption-desorption behavior of AsV using a range of techniques. X-ray photoelectron spectroscopy results revealed the partial reduction of pentavalent AsV to the more toxic trivalent AsIII form by FeCl3BSBC and Zr-FeCl3BSBC, which was not observed with FeBSBC. The Langmuir maximum AsV adsorption capacities were achieved as 27.4, 29.77, and 67.28 mg/g when treated with FeBSBC (at pH 5), FeCl3BSBC (at pH 5), and Zr-FeCl3BSBC (at pH 6), respectively, using 2 g/L biochar density and 22 ± 0.5 °C. Co-existing anions reduced the AsV removal efficiency in the order PO4 3- > CO3 2- > SO4 2- > Cl- > NO3 -, although no significant inhibitory effects were observed with cations like Na+, K+, Mg2+, Ca2+, and Al3+. The positive correlation of AsV adsorption capacity with temperature demonstrated that the endothermic process and the negative value of Gibbs free energy increased (-14.95 to -12.47 kJ/mol) with increasing temperature (277 to 313 K), indicating spontaneous reactions. Desorption and regeneration showed that recycled Fe-chips, Fe-salt, and Zr-Fe-salt-coated biochars can be utilized for the effective removal of AsV up to six-repeated cycles.

6.
J Hazard Mater ; 439: 129667, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104899

RESUMO

Perfluorohexanesulfonic acid (PFHxS) is one of the persistent organic pollutants that has been recommended to be listed in Annex A of the Stockholm Convention. It has gained increasing attention in recent years due to its toxic effects. The guideline values of PFHxS are commonly associated with PFOS in various countries and regulatory agencies. In this study, multispecies bioassays were conducted to determine the ecological toxic effects of PFHxS, including plants, soil invertebrates, and soil microorganisms, which indicated the EC10/NOEC values ranged from 2.9 to 250 mg/kg. Where possible, logistic models were used to calculate the EC30 values for various endpoints. The species sensitivity distributions were employed to estimate the ecological investigation levels for PFHxS contamination in soils using toxicity results from literature and this study. The calculation using EC10/NOEC values from both literature and this study indicated a most conservative HC5 as 1.0 mg/kg (hazardous concentration for 5 % of the species being impacted). However, utilisation of EC30 values derived from this study resulted in a much higher HC5 for PFHxS in contaminated soils (13.0 mg/kg) which is at the higher end of the existing guideline values for PFOS for protecting ecological systems. The results obtained in this study can be useful in risk assessment processes to minimize any uncertainty using combined values with PFOS.


Assuntos
Poluentes do Solo , Solo , Animais , Fluorocarbonos , Invertebrados , Medição de Risco , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Ácidos Sulfônicos
7.
Chemosphere ; 289: 133207, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890619

RESUMO

Crude oil contamination greatly influence soil bacterial community. Proliferative microbes in the crude oil-contaminated soil are closely related to the living conditions. Oil wells in the Yellow River Delta Natural Reserve (YRDNR) region is an ideal site for investigating the bacterial community of crude oil-contaminated saline soil. In the present study, 18 soil samples were collected from the depths of 0-20 cm and 20-40 cm around the oil wells in the YRDNR. The bacterial community profile was analyzed through high-throughput sequencing to trace the oil-degrading aerobic and anaerobic bacteria. The results indicated that C15-C28 and C29-C38 were the main fractions of total petroleum hydrocarbon (TPH) in the sampled soil. These TPH fractions had a significant negative effect on bacterial biodiversity (Shannon, Simpson, and Chao1 indices), which led to the proliferation of hydrocarbon-degrading bacteria. A comprehensive analysis between the environmental factors and soil microbial community structure showed that Streptococcus, Bacillus, Sphingomonas, and Arthrobacter were the aerobic hydrocarbon-degrading bacteria; unidentified Rhodobacteraceae and Porticoccus were considered to be the possible facultative anaerobic bacteria with hydrocarbon biodegradation ability; Acidithiobacillus, SAR324 clade, and Nitrosarchaeum were predicted to be the anaerobic hydrocarbon-degrading bacteria in the sub-surface soil. Furthermore, large amount of carbon sources derived from TPH was found to cause depletion of bioavailable nitrogen in the soil. The bacteria associated with nitrogen transformation, such as Solirubrobacter, Candidatus Udaeobacter, Lysinibacillus, Bradyrhizobium, Sphingomonas, Mycobacterium, and Acidithiobacillus, were highly abundant; these bacteria may possess the ability to increase nitrogen availability in the crude oil-contaminated soil. The bacterial community functions were significantly different between the surface and the sub-surface soil, and the dissolved oxygen concentration in soil was considered to be potential influencing factor. Our results could provide useful information for the bioremediation of crude oil-contaminated saline soil.


Assuntos
Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Rios , Solo , Microbiologia do Solo , Poluentes do Solo/análise
8.
Sci Rep ; 11(1): 8113, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854093

RESUMO

Antimony (Sb) is increasingly being recognized as an important contaminant due to its various industrial applications and mining operations. Environmental remediation approaches for Sb are still lacking, as is the understanding of Sb environmental chemistry. In this study, biosolid biochar (BSBC) was produced and utilized to remove antimonate (Sb(V)) from aqueous solution. Zirconium (Zr), Zirconium-iron (Zr-Fe) and Fe-O coated BSBC were synthesized for enhancing Sb(V) sorption capacities of BSBC. The combined results of specific surface area, FTIR, SEM-EDS, TEM-EDS, and XPS confirmed that Zr and/or Zr-Fe were successfully coated onto BSBC. The effects of reaction time, pH, initial Sb(V) concentration, adsorbate doses, ionic strength, temperature, and the influence of major competitive co-existing anions and cations on the adsorption of Sb(V) were investigated. The maximum sorption capacity of Zr-O, Zr-Fe, Zr-FeCl3, Fe-O, and FeCl3 coated BSBC were 66.67, 98.04, 85.47, 39.68, and 31.54 mg/g respectively under acidic conditions. The XPS results revealed redox transformation of Sb(V) species to Sb(III) occurred under oxic conditions, demonstrating the biochar's ability to behave as an electron shuttle during sorption. The sorption study suggests that Zr-O and Zr-O-Fe coated BSBC could perform as favourable adsorbents for mitigating Sb(V) contaminated waters.

9.
J Hazard Mater ; 409: 124488, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33246815

RESUMO

A novel biochar metal oxide composite was synthesized for effective removal of arsenate (As(V)) from aqueous solution. The materials synthesized for As(V) removal was based on a biosolid-derived biochar (BSBC) impregnated with zirconium (Zr) and zirconium-iron (Zr-Fe). The synthesized materials were comprehensively characterized with a range of techniques including Brunauer-Emmett-Teller (BET-N2) surface area, zeta potential, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results confirmed that loading of Zr and Zr-Fe onto the biochar surface was successful. The influence of pH, biochar density, ionic strength, As(V) dose rate, major anions and cations on As(V) removal was also investigated. Under all pH and reaction conditions the Zr-Fe composite biochar removed the greatest As(V) from solution of the materials tested. The maximum sorption capacity reached 15.2 mg/g for pristine BSBC (pH 4.0), while modified Zr-BSBC and Zr-FeBSBC composites achieved 33.1 and 62.5 mg/g (pH 6), respectively. The thermodynamic parameters (Gibbs free energy, enthalpy, and entropy) suggested that the adsorption process is spontaneous and endothermic. The ZrBSBC and Zr-FeBSBC showed excellent reusability and stability over four cycles. Unmodified biochar resulted in partial reduction of As(V) under oxic conditions, whilst modified biochars did not influence the oxidation state of As. All results demonstrated that the Zr and Zr-Fe BSBC composites could perform as promising adsorbents for efficient arsenate removal from natural waters.

10.
Chemosphere ; 271: 129566, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460896

RESUMO

Nitrogen amendment is known to effectively enhance the bioremediation of hydrocarbon-contaminated soil, but the nitrogen metabolism in this process is not well understood. To unravel the nitrogen metabolic pathway(s) of diesel contaminated soil, six types of nitrogen sources were added to the diesel contaminated soil. Changes in microbial community and soil enzyme genes were investigated by metagenomics analysis and chemical analysis through a 30-day incubation study. The results showed that ammonium based nitrogen sources significantly accelerated the degradation of total petroleum hydrocarbon (TPH) (79-81%) compared to the control treatment (38%) and other non-ammonium based nitrogen amendments (43-57%). Different types of nitrogen sources could dramatically change the microbial community structure and soil enzyme gene abundance. Proteobacteria and Actinobacteria were identified as the two dominant phyla in the remediation of diesel contaminated soil. Metagenomics analysis revealed that the preferred metabolic pathway of nitrogen was from ammonium to glutamate via glutamine, and the enzymes governing this transformation were glutamine synthetase and glutamate synthetase; while in nitrate based amendment, the conversion from nitrite to ammonium was restrained by the low abundance of nitrite reductase enzyme and therefore retarded the TPH degradation rate. It is concluded that during the process of nitrogen enhanced bioremediation, the most efficient nitrogen cycling direction was from ammonium to glutamine, then to glutamate, and finally joined with carbon metabolism after transforming to 2-oxoglutarate.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Redes e Vias Metabólicas/genética , Metagenômica , Nitrogênio/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
11.
Environ Int ; 117: 10-15, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704752

RESUMO

Currently, data that guide safe concentration ranges for inorganic mercury in the soil are lacking and subsequently, threaten soil health. In the present study, a species sensitivity distribution (SSD) approach was applied to estimate critical mercury concentration that has little (HC5) or no effect (PNEC) on soil biota. Recently published terrestrial toxicity data were incorporated in the approach. Considering total mercury content in soils, the estimated HC5 was 0.6 mg/kg, and the PNEC was 0.12-0.6 mg/kg. Whereas, when only water-soluble mercury fractions were considered, these values were 0.04 mg/kg and 0.008-0.04 mg/kg, respectively.


Assuntos
Poluição Ambiental , Mercúrio , Poluentes do Solo , Poluição Ambiental/legislação & jurisprudência , Poluição Ambiental/prevenção & controle
12.
Environ Int ; 105: 86-94, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28521193

RESUMO

On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/farmacocinética , Animais , Caprilatos/farmacocinética , Feminino , Fluorocarbonos/farmacocinética , Humanos , Lactação , Masculino , Camundongos , Ratos , Padrões de Referência , Reprodutibilidade dos Testes , Testes de Toxicidade
13.
Environ Sci Pollut Res Int ; 23(3): 2663-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26438364

RESUMO

In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.


Assuntos
Arsênio/toxicidade , Chlorella/efeitos dos fármacos , Fosfatos/metabolismo , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Biodegradação Ambiental , Biotransformação , Chlorella/metabolismo , Oxirredução , Solo
14.
J Hazard Mater ; 262: 997-1003, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23290483

RESUMO

A Gram-negative, arsenite-oxidizing bacterial strain, MM-1 tolerant to 20mM arsenite and 200 mM arsenate was isolated from a heavy metal contaminated soil which contained only 8.8 mg kg(-1) of arsenic. Based on 16S rRNA analysis, the strain was closely related to the genus Variovorax. This strain completely oxidized 500 µM of arsenite to arsenate within 3h of incubation in minimal salts medium. Kinetic studies of arsenite oxidation by the cells showed one of the lowest Km (17 µM) and highest Vmax (1.23 × 10(-7) µM min(-1) cell(-1)) values reported to date for whole cell suspension. PCR analysis using degenerate primers confirmed the presence of arsenite oxidase gene and its amino acid sequence was 70-91% identical to the large subunit of most reported arsenite oxidases. The significant arsenite oxidation capacity shown by the strain opens the way to its potential application in arsenic remediation process.


Assuntos
Betaproteobacteria/enzimologia , Betaproteobacteria/genética , Oxirredutases/genética , Microbiologia do Solo , Arsênio/química , Arsenitos/química , Biodegradação Ambiental , Clonagem Molecular , Primers do DNA , Genes Bacterianos , Cinética , Oxirredução , Oxigênio/química , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA