Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 598(7881): 468-472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34552242

RESUMO

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Assuntos
Ciclo do Carbono , Ecossistema , Plantas/metabolismo , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Clima , Conjuntos de Dados como Assunto , Umidade , Plantas/classificação , Análise de Componente Principal
2.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190514

RESUMO

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Assuntos
Secas , Ecossistema , Pradaria , Ciclo do Carbono , Mudança Climática , Receptores Proteína Tirosina Quinases
3.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271585

RESUMO

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Assuntos
Carbono , Floresta Úmida , Carbono/metabolismo , Ecossistema , Secas , Água/metabolismo , Árvores/metabolismo , Carboidratos , Folhas de Planta/metabolismo
4.
Glob Chang Biol ; 30(3): e17245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511487

RESUMO

The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change.


Assuntos
Ecossistema , Solo , Mudança Climática , Estações do Ano , Microbiologia do Solo , Nutrientes
5.
New Phytol ; 240(2): 565-576, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545200

RESUMO

Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.


Assuntos
Ecossistema , Traqueófitas , Solo , Pradaria , Nitrogênio/análise , Mudança Climática , Biomassa , Plantas , Carbono
6.
Glob Chang Biol ; 29(18): 5276-5291, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37427494

RESUMO

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13 CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.


Assuntos
Carbono , Ecossistema , Pradaria , Dióxido de Carbono , Nitrogênio , Plantas , Solo
7.
Nature ; 542(7639): 91-95, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117440

RESUMO

Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.


Assuntos
Altitude , Florestas , Temperatura , Árvores/metabolismo , Biodiversidade , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Solo/química , Microbiologia do Solo , Tundra
8.
Ecol Lett ; 25(1): 52-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708508

RESUMO

Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross-seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change.


Assuntos
Ecossistema , Neve , Mudança Climática , Pradaria , Estações do Ano , Solo
9.
Plant Cell Environ ; 45(9): 2617-2635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35610775

RESUMO

Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.


Assuntos
Abies , Picea , Carbono , Secas , Florestas , Picea/fisiologia , Árvores/fisiologia , Água , Xilema/fisiologia
10.
Glob Chang Biol ; 28(17): 5086-5103, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607942

RESUMO

Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.


Assuntos
Secas , Ecossistema , Ciclo do Carbono , Mudança Climática , Solo
11.
Glob Chang Biol ; 28(7): 2425-2441, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34908205

RESUMO

Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO2 , and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO2 (eCO2 ) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using 15 N isotope pool dilution techniques. Whereas eCO2  showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO2 ) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world.


Assuntos
Secas , Pradaria , Aminoácidos , Dióxido de Carbono/análise , Ecossistema , Nitrogênio/análise , Solo/química , Microbiologia do Solo
12.
Ecol Lett ; 24(5): 970-983, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33638576

RESUMO

Life history strategies are fundamental to the ecology and evolution of organisms and are important for understanding extinction risk and responses to global change. Using global datasets and a multiple response modelling framework we show that trait-climate interactions are associated with life history strategies for a diverse range of plant species at the global scale. Our modelling framework informs our understanding of trade-offs and positive correlations between elements of life history after accounting for environmental context and evolutionary and trait-based constraints. Interactions between plant traits and climatic context were needed to explain variation in age at maturity, distribution of mortality across the lifespan and generation times of species. Mean age at maturity and the distribution of mortality across plants' lifespan were under evolutionary constraints. These findings provide empirical support for the theoretical expectation that climatic context is key to understanding trait to life history relationships globally.


Assuntos
Características de História de Vida , Evolução Biológica , Ecologia , Fenótipo , Plantas
13.
Ecol Lett ; 24(12): 2713-2725, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617374

RESUMO

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.


Assuntos
Pradaria , Solo , Biomassa , Carbono , Ecossistema , Micronutrientes , Nitrogênio/análise
14.
New Phytol ; 231(6): 2382-2394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34137037

RESUMO

Meta-analyses enable synthesis of results from globally distributed experiments to draw general conclusions about the impacts of global change factors on ecosystem function. Traditional meta-analyses, however, are challenged by the complexity and diversity of experimental results. We illustrate how several key issues can be addressed by a multivariate, hierarchical Bayesian meta-analysis (MHBM) approach applied to information extracted from published studies. We applied an MHBM to log-response ratios for aboveground biomass (AB, n = 300), belowground biomass (BB, n = 205) and soil CO2 exchange (SCE, n = 544), representing 100 studies. The MHBM accounted for study duration, climate effects and covariation among the AB, BB and SCE responses to elevated CO2 (eCO2 ) and/or warming. The MHBM revealed significant among-study covariation in the AB and BB responses to experimental treatments. The MHBM imputed missing duration (4.2%) and climate (6%) data, and revealed that climate context governs how eCO2 and warming impact ecosystem function. Predictions identified biomes that may be particularly sensitive to eCO2 or warming, but that are under-represented in global change experiments. The MHBM approach offers a flexible and powerful tool for synthesising disparate experimental results reported across multiple studies, sites and response variables.


Assuntos
Mudança Climática , Ecossistema , Teorema de Bayes , Dióxido de Carbono , Solo
15.
Glob Chang Biol ; 27(14): 3230-3243, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811716

RESUMO

Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2 ). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2 , drought × eT_eCO2 ) on ecosystem C dynamics. We performed two in situ 13 CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13 C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2 , but reduced the small fraction remaining in soil under eT_eCO2 . After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.


Assuntos
Carbono , Solo , Dióxido de Carbono/análise , Secas , Ecossistema , Pradaria , Respiração
16.
Glob Chang Biol ; 26(8): 4366-4378, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32343042

RESUMO

The supply of soil respiration with recent photoassimilates is an important and fast pathway for respiratory loss of carbon (C). To date it is unknown how drought and land-use change interactively influence the dynamics of recent C in soil-respired CO2 . In an in situ common-garden experiment, we exposed soil-vegetation monoliths from a managed and a nearby abandoned mountain grassland to an experimental drought. Based on two 13 CO2 pulse-labelling campaigns, we traced recently assimilated C in soil respiration during drought, rewetting and early recovery. Independent of grassland management, drought reduced the absolute allocation of recent C to soil respiration. Rewetting triggered a respiration pulse, which was strongly fuelled by C assimilated during drought. In comparison to the managed grassland, the abandoned grassland partitioned more recent C to belowground respiration than to root C storage under ample water supply. Interestingly, this pattern was reversed under drought. We suggest that these different response patterns reflect strategies of the managed and the abandoned grassland to enhance their respective resilience to drought, by fostering their resistance and recovery respectively. We conclude that while severe drought can override the effects of abandonment of grassland management on the respiratory dynamics of recent C, abandonment alters strategies of belowground assimilate investment, with consequences for soil-CO2 fluxes during drought and drought-recovery.


Assuntos
Carbono , Secas , Dióxido de Carbono , Pradaria , Solo
17.
Glob Chang Biol ; 26(6): 3336-3355, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32012402

RESUMO

Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model-data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter-model variation is generally large and model agreement varies with timescales. In severely water-limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily-monthly) timescales and reduces on longer (seasonal-annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter-model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.


Assuntos
Ciclo do Carbono , Ecossistema , Folhas de Planta , Estações do Ano , Água
18.
Glob Chang Biol ; 26(1): 119-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891233

RESUMO

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.


Assuntos
Acesso à Informação , Ecossistema , Biodiversidade , Ecologia , Plantas
19.
Ecol Appl ; 30(3): e02064, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872519

RESUMO

The leaf economic spectrum is a widely studied axis of plant trait variability that defines a trade-off between leaf longevity and productivity. While this has been investigated at the global scale, where it is robust, and at local scales, where deviations from it are common, it has received less attention at the intermediate scale of plant functional types (PFTs). We investigated whether global leaf economic relationships are also present within the scale of plant functional types (PFTs) commonly used by Earth System models, and the extent to which this global-PFT hierarchy can be used to constrain trait estimates. We developed a hierarchical multivariate Bayesian model that assumes separate means and covariance structures within and across PFTs and fit this model to seven leaf traits from the TRY database related to leaf longevity, morphology, biochemistry, and photosynthetic metabolism. Although patterns of trait covariation were generally consistent with the leaf economic spectrum, we found three approximate tiers to this consistency. Relationships among morphological and biochemical traits (specific leaf area [SLA], N, P) were the most robust within and across PFTs, suggesting that covariation in these traits is driven by universal leaf construction trade-offs and stoichiometry. Relationships among metabolic traits (dark respiration [Rd ], maximum RuBisCo carboxylation rate [Vc,max ], maximum electron transport rate [Jmax ]) were slightly less consistent, reflecting in part their much sparser sampling (especially for high-latitude PFTs), but also pointing to more flexible plasticity in plant metabolistm. Finally, relationships involving leaf lifespan were the least consistent, indicating that leaf economic relationships related to leaf lifespan are dominated by across-PFT differences and that within-PFT variation in leaf lifespan is more complex and idiosyncratic. Across all traits, this covariance was an important source of information, as evidenced by the improved imputation accuracy and reduced predictive uncertainty in multivariate models compared to univariate models. Ultimately, our study reaffirms the value of studying not just individual traits but the multivariate trait space and the utility of hierarchical modeling for studying the scale dependence of trait relationships.


Assuntos
Folhas de Planta , Plantas , Teorema de Bayes , Análise Multivariada , Fotossíntese
20.
Nature ; 500(7462): 287-95, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23955228

RESUMO

The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.


Assuntos
Ciclo do Carbono , Mudança Climática , Ecossistema , Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA