Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 553(7689): 515-520, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342133

RESUMO

The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a 'super-enhancer' is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a 'blood enhancer cluster' (BENC). We show that BENC is also essential for the maintenance of MLL-AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genes myc/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucemia/genética , Leucemia/patologia , Família Multigênica/genética , Animais , Linfócitos B/citologia , Diferenciação Celular , Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Regulação para Baixo , Feminino , Deleção de Genes , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células Mieloides/citologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Deleção de Sequência , Análise de Sobrevida , Fatores de Transcrição/metabolismo
2.
Nature ; 558(7711): E4, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769714

RESUMO

In the originally published version of this Letter, ref. 43 was erroneously provided twice. In the 'Estimation of relative cell-type-specific composition of AML samples' section in the Methods, the citation to ref. 43 after the GEO dataset GSE24759 is correct. However, in the 'Mice' section of the Methods, the citation to ref. 43 after 'TAMERE' should have been associated with a new reference1. The original Letter has been corrected online (with the new reference included as ref. 49).

3.
Nature ; 560(7718): E28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069041

RESUMO

In Extended Data Fig. 1a of this Letter, the flow cytometry plot depicting the surface phenotype of AML sample DD08 was a duplicate of the plot for AML sample DD06. Supplementary Data 4 has been added to the Supplementary Information of the original Letter to clarify the proteome data acquisition and presentation. The original Letter has been corrected online.

4.
Nature ; 551(7680): 384-388, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144447

RESUMO

The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukaemia cells caused accumulation of αKG, leading to EGLN1-mediated HIF1α protein degradation. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. By contrast, overexpression of BCAT1 in leukaemia cells decreased intracellular αKG levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (IDHmut), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlate with shorter overall survival in IDHWTTET2WT, but not IDHmut or TET2mut AML. Gene sets characteristic for IDHmut AML were enriched in samples from patients with an IDHWTTET2WTBCAT1high status. BCAT1high AML showed robust enrichment for leukaemia stem-cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular αKG, BCAT1 links BCAA catabolism to HIF1α stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. Our results suggest the BCAA-BCAT1-αKG pathway as a therapeutic target to compromise leukaemia stem-cell function in patients with IDHWTTET2WT AML.


Assuntos
Metilação de DNA , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epistasia Genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Terapia de Alvo Molecular , Mutação , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteólise , Proteômica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transaminases/deficiência , Transaminases/genética
6.
Water Res X ; 9: 100061, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817931

RESUMO

Granular ferric hydroxide (GFH) is often used for fixed bed adsorbent (FBA) columns in groundwater purification units around the world to remove arsenate contaminations. Groundwater can contain also other toxic (e.g., antimonite and vanadate) and non-toxic oxo-anions (phosphate and silicic acid) that are known to affect FBA lifetimes. Therefore, understanding the breakthrough of toxic compounds intended for removal by FBA is essential to their design, and is important to predict accurately breakthrough curves (BTCs) for FBAs in waterworks to plan future operating costs. Rapid small-scale column tests (RSCCT) and pilot-scale FBA were used to simulate vanadate BTCs for complex groundwater chemistries. The BTCs were simulated successfully using a homogeneous surface diffusion model (HSDM) combining equilibrium chemical adsorption and kinetic mass transfer. Adsorption parameters for various groundwater compositions were predicted using the CD-MUSIC surface complexation model, which was set up for the first time for akaganéite-based granular ferric hydroxide with a competitive multi-solute system. The results indicated that V(V) is less prone to competitive adsorption effects, and use of the homogeneous surface diffusion model to predict the BTCs requires then the kinetic mass transfer Biot number to be used as the only fitting parameter. On the other hand, a concentration overshoot could be observed for the two weaker absorbed oxo-anions arsenate and phosphate because of displacement by the vanadate. Results of pilot scale test column BTCs of vanadate for three waterworks with different groundwater compositions could be favorably extrapolated with a unique Freundlich constant kF of 3.2 derived on basis of the multi-solute CD-MUSIC model, and a unique Biot number of 37 fixed for all three different test sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA