Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 102(1): 27-43, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276006

RESUMO

Locus heterogeneity characterizes a variety of skeletal dysplasias often due to interacting or overlapping signaling pathways. Robinow syndrome is a skeletal disorder historically refractory to molecular diagnosis, potentially stemming from substantial genetic heterogeneity. All current known pathogenic variants reside in genes within the noncanonical Wnt signaling pathway including ROR2, WNT5A, and more recently, DVL1 and DVL3. However, ∼70% of autosomal-dominant Robinow syndrome cases remain molecularly unsolved. To investigate this missing heritability, we recruited 21 families with at least one family member clinically diagnosed with Robinow or Robinow-like phenotypes and performed genetic and genomic studies. In total, four families with variants in FZD2 were identified as well as three individuals from two families with biallelic variants in NXN that co-segregate with the phenotype. Importantly, both FZD2 and NXN are relevant protein partners in the WNT5A interactome, supporting their role in skeletal development. In addition to confirming that clustered -1 frameshifting variants in DVL1 and DVL3 are the main contributors to dominant Robinow syndrome, we also found likely pathogenic variants in candidate genes GPC4 and RAC3, both linked to the Wnt signaling pathway. These data support an initial hypothesis that Robinow syndrome results from perturbation of the Wnt/PCP pathway, suggest specific relevant domains of the proteins involved, and reveal key contributors in this signaling cascade during human embryonic development. Contrary to the view that non-allelic genetic heterogeneity hampers gene discovery, this study demonstrates the utility of rare disease genomic studies to parse gene function in human developmental pathways.


Assuntos
Anormalidades Craniofaciais/genética , Nanismo/genética , Heterogeneidade Genética , Deformidades Congênitas dos Membros/genética , Anormalidades Urogenitais/genética , Via de Sinalização Wnt/genética , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Segregação de Cromossomos/genética , Anormalidades Craniofaciais/diagnóstico , Diagnóstico Diferencial , Nanismo/diagnóstico , Feminino , Genes Dominantes , Estudos de Associação Genética , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Fenótipo , Anormalidades Urogenitais/diagnóstico
2.
Genet Med ; 23(5): 888-899, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33597769

RESUMO

PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Encéfalo , Proteína 4 Homóloga a Disks-Large/genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo
3.
Nucleic Acids Res ; 45(4): 1633-1648, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27980096

RESUMO

We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17-50% of pathogenic CNVs in different disease cohorts where 7.1-11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses.


Assuntos
Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Exoma , Doenças Genéticas Inatas/genética , Hemizigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Algoritmos , Processamento Alternativo , Estudos de Coortes , Consanguinidade , Conjuntos de Dados como Assunto , Doenças Genéticas Inatas/diagnóstico , Humanos , Padrões de Herança , Modelos Genéticos , Linhagem , Reprodutibilidade dos Testes , Deleção de Sequência , Fluxo de Trabalho
4.
Genet Med ; 20(12): 1528-1537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790871

RESUMO

PURPOSE: Multilocus variation-pathogenic variants in two or more disease genes-can potentially explain the underlying genetic basis for apparent phenotypic expansion in cases for which the observed clinical features extend beyond those reported in association with a "known" disease gene. METHODS: Analyses focused on 106 patients, 19 for whom apparent phenotypic expansion was previously attributed to variation at known disease genes. We performed a retrospective computational reanalysis of whole-exome sequencing data using stringent Variant Call File filtering criteria to determine whether molecular diagnoses involving additional disease loci might explain the observed expanded phenotypes. RESULTS: Multilocus variation was identified in 31.6% (6/19) of families with phenotypic expansion and 2.3% (2/87) without phenotypic expansion. Intrafamilial clinical variability within two families was explained by multilocus variation identified in the more severely affected sibling. CONCLUSION: Our findings underscore the role of multiple rare variants at different loci in the etiology of genetically and clinically heterogeneous cohorts. Intrafamilial phenotypic and genotypic variability allowed a dissection of genotype-phenotype relationships in two families. Our data emphasize the critical role of the clinician in diagnostic genomic analyses and demonstrate that apparent phenotypic expansion may represent blended phenotypes resulting from pathogenic variation at more than one locus.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/genética , Variação Genética , Patologia Molecular , Pré-Escolar , Exoma/genética , Feminino , Doenças Genéticas Inatas/patologia , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
5.
Immunol Invest ; 44(3): 216-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25565576

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are attractive tools for cancer gene therapy due to their intrinsic tropism to the tumor environment. Interleukin-2 (IL2) is recognized as a key regulatory molecule, which enhances the activity and growth of the immune effector cell function. High-Dose IL2 Therapy is an option for treatment of malignant melanoma but has frequent, often serious and sometimes life-threatening side effects. Here we investigated the effect of genetically modified ADSCs (GM-ADSCs) expressing IL2 in immunocompetent mouse models of subcutaneous and lung metastatic melanoma. Prior to in vivo studies, we demonstrated that IL2 produced by GM-ADSCs may act as a growth factor for melanoma cells due to the increased viability and reduced apoptosis of melanoma cells after in vitro treatment. Subcutaneous co-injection of IL2-expressing ADSCs with melanoma cells significantly enhanced the melanoma tumor growth. Furthermore, histological analysis of subcutaneous tumors for IL2 and Melan-A (a melanocytic differentiation marker) confirmed that most of cells in melanoma/IL2-ADSC co-injected tumors are melanoma cells, not IL2-ADSCs. In pulmonary metastases model, melanoma cells were injected intravenously and 10 days later mice were treated by systematical injection of GM-ADSCs. Intravenously injected IL2-ADSCs engrafted into melanoma lung tumors but were unable to reduce melanoma lung metastases. Besides, administered IL2-ADSCs significantly reduced systemic CD4+ cells and did not impact the total survival of lung metastases melanoma bearing mice. In conclusion, this study showed that IL2-producing ADSCs can favor B16F10 melanoma cell proliferation. Therefore, therapies utilizing IL2 have to be taken into careful consideration.


Assuntos
Interleucina-2/metabolismo , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Células-Tronco Mesenquimais/fisiologia , Neoplasias Cutâneas/terapia , Tecido Adiposo/citologia , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Modelos Animais de Doenças , Terapia Genética , Interleucina-2/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral
6.
Mol Cancer ; 13: 255, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25428727

RESUMO

BACKGROUND: TRAIL and IFNγ are promising anti-cancer cytokines and it has been shown that IFNγ may sensitize cancer cells to TRAIL. Adipose derived mesenchymal stem cells (ADSCs) are attractive vehicles for delivering anti-cancer agents. In this study, we evaluated the therapeutic potential of PhiC31 (φC31) recombinase and/or piggyBac transposase (pBt) modified ADSCs expressing either TRAIL, IFNγ, or co-expressing TRAIL/IFNγ in mouse models of melanoma. METHODS: The expression and bioactivity of mouse IFNγ and TRAIL in φC31 and pBt modified cells were confirmed. We examined the effects of modified ADSCs on signal intensity of red fluorescence protein expressed by melanoma cells in subcutaneous tumors or established lung metastases and on survival (6 mice per group). We also conducted a flow cytometric analysis of systemic CD4(+)CD25(+)FOXP3(+) T regulatory cells (Tregs) and histological analysis of melanoma tumors. Data were analyzed by Student t test, ANOVA, and log-rank tests. All statistical tests were two-sided. RESULTS: We demonstrated non-viral DNA-integrating vectors can be used for stable transgene expression. IFNγ inhibited melanoma cell growth in vitro probably via IFNγ-induced JAK/STAT1 signaling pathway activation. Murine TRAIL induced apoptosis in the human cell lines CAOV-4 and Ej-138, while MCF7 and B16F10 cells appeared to be insensitive to TRAIL. Treatment of melanoma cells with IFNγ did not influence their response to TRAIL. In contrast, results from in vivo studies showed that IFNγ-expressing ADSCs, engrafted into tumor stroma, inhibited tumor growth and angiogenesis, prevented systemic increase of Tregs, increased PD-L1 expression and CD8+ infiltration (but not interleukin-2+ cells), and prolonged the survival of mice (68 days, 95% confidence interval [CI] = 52 to 86 days compared to 36 days, 95% CI = 29 to 39 days for control, P < .001). CONCLUSIONS: For the first time, we employed DNA integrating vectors for safe and stable modification of MSCs. Our data indicate potential of non-virally modified IFNγ-expressing ADSCs for treatment of melanoma through direct effects of IFNγ. This study may have a significant role in the management of cancer in the future.


Assuntos
Interferon gama/metabolismo , Melanoma/metabolismo , Recombinases/metabolismo , Células-Tronco/metabolismo , Células Estromais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transposases/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Humanos , Interleucina-2/metabolismo , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/metabolismo
7.
Cancer Res ; 84(10): 1719-1732, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38451249

RESUMO

Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. SIGNIFICANCE: The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy-based longitudinal monitoring of patient tumor transcriptomes.


Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , Perfilação da Expressão Gênica , Transcriptoma , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Biópsia Líquida/métodos , Neoplasias Colorretais/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/sangue , Neoplasias/patologia
8.
Cancer Discov ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975874

RESUMO

KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.

9.
Clin Dysmorphol ; 30(4): 167-172, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34456244

RESUMO

OBJECTIVES: Pathogenic missense variants in the potassium channel tetramerization domain-containing 1 (KCTD1) gene are associated with autosomal dominant Scalp-Ear-Nipple syndrome (SENS), a type of ectodermal dysplasia characterized by aplasia cutis congenita of the scalp, hairless posterior scalp nodules, absent or rudimentary nipples, breast aplasia and external ear anomalies. We report a child with clinical features of an ectodermal dysplasia, including sparse hair, dysmorphic facial features, absent nipples, 2-3 toe syndactyly, mild atopic dermatitis and small cupped ears with overfolded helices. We also review the published cases of SENS with molecularly confirmed KCTD1 variants. METHODS AND RESULTS: Using whole-exome sequencing, we identified a novel, de novo in-frame insertion in the broad-complex, tramtrack and bric-a-brac (BTB) domain of the KCTD1 gene. By comparing to the previously reported patients, we found that our patient's clinical features and molecular variant are consistent with a diagnosis of SENS. CONCLUSIONS: This is only the 13th KCTD1 variant described and the first report of an in-frame insertion causing clinical features, expanding the mutational spectrum of KCTD1 and SENS.


Assuntos
Displasia Ectodérmica , Mamilos , Canais de Potássio , Anormalidades Múltiplas , Criança , Proteínas Correpressoras/metabolismo , Orelha Externa/anormalidades , Orelha Externa/metabolismo , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Hipospadia , Masculino , Hipotonia Muscular , Mamilos/anormalidades , Canais de Potássio/genética , Couro Cabeludo/anormalidades , Couro Cabeludo/metabolismo
10.
Genome Med ; 11(1): 80, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818324

RESUMO

BACKGROUND: We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS: Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS: High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS: These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.


Assuntos
Variações do Número de Cópias de DNA , Rearranjo Gênico , Mutação , Proteína Proteolipídica de Mielina/genética , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Duplicação Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Genoma Humano , Instabilidade Genômica , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único
11.
Adv Biomed Res ; 4: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709985

RESUMO

BACKGROUND: Kisspeptins (kp) activate a receptor coupled to a Gαq subunit (GPR54 or KiSS-1R) receptor to perform a variety of functions, including inhibition of cell motility, chemotaxis, and metastasis. In this study we have investigated whether kp-10, the most potent member of the kisspeptin family, can modulate CXCR4 (C-X-C chemokine receptor type 4) expression and mesenchymal stem cells (MSCs) migration that may influence the development of tumors. MATERIALS AND METHODS: We compared the directional migration of MSCs treated with 10-100 or 500 nM kp-10 for 24 hours and no treated cells using an in vitro transmembrane migration assay. In addition, Chloromethylbenzamido Dialkylacarbocyanine (CM-Dil) labeled adipose-derived mesenchymal stem cells treated with 10-100 or 500 nM kp-10 and no treated cells were transfused via the tail vein to the melanoma tumor bearing C57BL/6 mice. After 24 hours, the mice were scarified, the tumors were dissected, and the tumor cell suspensions were analyzed by flow cytometry for detection of CM-Dil(+) MSCs. RESULTS: We have found that kp-10 increased the MSCs migration at 100 nM, while it decreased the MSCs migration at 500 nM, both in vitro and in vivo, with a significant increase of CXCR4 expression at 100 nM kp-10 compared to the no treated cells, but it had no significant difference between the various concentrations of kp-10. CONCLUSION: Thus, our data showed that kp-10 can differently affect MSCs migration in various concentrations, probably through different effects on CXCR4 expression in various concentrations.

12.
Adv Biomed Res ; 1: 8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23210067

RESUMO

BACKGROUND: There are significant limitations in repair of irrecoverable bone defects. Stem-cell therapy is a promising approach for the construction of bone tissue. Mesenchymal stem cells (MSCs) have been introduced as basic tools for bone tissue generation. Through MSCs, adipose-derived stem cells (ADSCs) are more interesting. Since the similarity of native osteoblasts and differentiated osteoblasts from ADSCs in terms of gene expression pattern is unknown, this study was designed to compare gene expression patterns of some genes involved in osteogenesis between human native osteoblasts and adipose-derived differentiated osteoblasts. MATERIALS AND METHODS: Realtime qRT-PCR was used for studying the gene expression of osteocalcin, osteopontin, and core binding factor alpha 1 (Cbfa1) in human native osteoblasts and adipose derived osteogenic osteoblasts at days 7, 14, 21, and 28 of differentiation. RESULTS: This study demonstrated that native osteoblasts and differentiated osteoblasts, cultured in common osteogenic medium, have significant differences in gene expression levels for osteocalcin and osteopontin. Compared to native osteoblasts, these genes are expressed lower in all four groups of differentiated osteoblastic cells. We also found, there is a progressive increase in cbfa1 expression over the differentiation period of ADSCs from day 7 to day 28. CONCLUSIONS: Our findings help for better assessment of adipose-derived differentiated cells as a source for cell-based therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA