Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276098

RESUMO

Accurate and rapid detection of the causative agent of a disease is of great importance in controlling the spread of the disease. This work developed a biosensor with the Bi2Te3 family of topological insulators for detection of the SARS-CoV-2 virulence factor. The Bi2Te3 family is a three-dimensional topological insulator material with topologically protected surface states; the presence of these surface states facilitates charge transfer between the electrode and electrolyte interface. Compared with the detection performance of Bi2Se3, BiSbTeSe2, and a trivial insulator like Sb2Se3, Bi2Te3 exhibits superior characteristics. A Bi2Te3 electrochemical detection platform is utilized to fabricate a sensor that can detect SARS-CoV-2 DNA, RNA, and antigen for label-free target detection. The concentration range of DNA detection by the biosensor using Bi2Te3 is between 1.0 × 10-15 and 1.0 × 10-10 M, and the detection limit can reach 1.41 × 10-16 M. Furthermore, it exhibits excellent selectivity and maintains good stability even after being stored for 14 days. This study provides a new way to apply topological insulator materials in the field of biosensors and use their unique electronic structure to improve the accuracy and speed of disease detection and diagnosis.

2.
Langmuir ; 39(12): 4466-4474, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36929878

RESUMO

Controlling the assembly of DNA in order on a suitable electrode surface is of great significance for biosensors and disease diagnosis, but it is full of challenges. In this work, we creatively assembled DNA on the surface of octadecylamine (ODA)-modified topological insulator (Tls) Bi2Se3 and developed an electrochemical biosensor to detect biomarker DNA of coronavirus disease 2019 (COVID-19). A high-quality Bi2Se3 sheet was obtained from a single crystal synthesized in our lab. A uniform ODA layer was coated in argon by chemical vapor deposition (CVD). We observed and analyzed the assembly and mechanism of single-strand DNA (ssDNA) and double-strand DNA (dsDNA) on the Bi2Se3 surface through atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The electrochemical signal revealed that the biosensor based on the DNA/ODA/Bi2Se3 electrode has a wide linear detection range from 1.0 × 10-12 to 1.0 × 10-8 M, with the limit of detection as low as 5 × 10-13 M. Bi2Se3 has robust surface states and improves the electrochemical signal-to-noise ratio, while the uniform ODA layer guides high-density ordered DNA, enhancing the sensitivity of the biosensor. Our work demonstrates that the ordered DNA/ODA/Bi2Se3 electrode surface has great application potential in the field of biosensing and disease diagnosis.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , DNA/química , Aminas , DNA de Cadeia Simples
3.
Bioelectrochemistry ; 159: 108748, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38824746

RESUMO

In this study, we have designed an electrochemical biosensor based on topological material Bi2Se3 for the sensitive detection of SARS-CoV-2 in the COVID-19 pandemic. Flake-shaped Bi2Se3 was obtained directly from high-quality single crystals using mechanical exfoliation, and the single-stranded DNA was immobilized onto it. Under optimal conditions, the peak current of the differential pulse voltammetry method exhibited a linear relationship with the logarithm of the concentration of target-complementary-stranded DNA, ranging from 1.0 × 10-15 to 1.0 × 10-11 M, with a detection limit of 3.46 × 10-16 M. The topological material Bi2Se3, with Dirac surface states, enhanced the signal-to-interference plus noise ratio of the electrochemical measurements, thereby improving the sensitivity of the sensor. Furthermore, the electrochemical sensor demonstrated excellent specificity in recognizing RNA. It can detect complementary RNA by amplifying and transcribing the initial DNA template, with an initial DNA template concentration ranging from 1.0 × 10-18 to 1.0 × 10-15 M. Furthermore, the sensor also effectively distinguished negative and positive results by detecting splitting-synthetic SARS-CoV-2 pseudovirus with a concentration of 1 copy/µL input. Our work underscores the immense potential of the electrochemical sensing platform based on the topological material Bi2Se3 in the detection of pathogens during the rapid spread of acute infectious diseases.


Assuntos
Técnicas Biossensoriais , Bismuto , COVID-19 , Técnicas Eletroquímicas , Limite de Detecção , SARS-CoV-2 , Técnicas Biossensoriais/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Bismuto/química , Técnicas Eletroquímicas/métodos , Humanos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , RNA Viral/genética , RNA Viral/análise , Compostos de Selênio/química
4.
Anal Chim Acta ; 1239: 340655, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628700

RESUMO

In this work, we designed a facile and label-free electrochemical biosensor based on intrinsic topological insulator (TI) Bi2Se3 and peptide for the detection of immune checkpoint molecules. With topological protection, Bi2Se3 could have robust surface states with low electronic noise, which was beneficial for the stable and sensitive electron transport between electrode and electrolyte interface. The peptides are easily synthesized and chemically modified, and have good biocompatibility and bioavailability, which is a suitable candidate as the recognition units for immune checkpoint molecules. Therefore, the peptide/Bi2Se3 was developed as a suitable working electrode for the electrochemical biosensor. The basic performance of the designed peptide/Bi2Se3 biosensor was investigated to determine the Anti-HA Tag Antibody and PD-L1 molecules. The linear detection range was from 3.6 × 10-10 mg mL-1 to 3.6 × 10-5 mg mL-1, and the detection limit was 1.07 × 10-11 mg mL-1. Moreover, the biosensor also displayed good selectivity and stability.


Assuntos
Técnicas Biossensoriais , Proteínas de Checkpoint Imunológico , Peptídeos , Disponibilidade Biológica , Eletrodos , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA