Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pestic Biochem Physiol ; 188: 105283, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464338

RESUMO

Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.


Assuntos
Inseticidas , Mariposas , Feminino , Animais , Inseticidas/farmacologia , Ciclosporina/farmacologia , Pupa , Gossypium
2.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750634

RESUMO

Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar's OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.


Assuntos
Proteínas Hemolisinas/química , Mariposas , Animais , Abelhas , Larva , Meliteno , Mariposas/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-28206701

RESUMO

The C-type lectins mediate nonself recognition in insects. The previous studies focused on host immunlectin response to bacterial infection; however, the molecular basis of immunlectin reactions to endoparasitoids has not been elucidated. The present study investigated the effect of parasitization by Campoletis chlorideae on hemagglutination activity (HA; defined as the ability of lectin to agglutinate erythrocytes or other cells), and transcriptional expression of C-type immunlectin genes in the larval host, Helicoverpa armigera. Parasitization induced four- to eightfold higher HA in the parasitized larvae, compared to nonparasitized larvae at days 2 and 6 postparasitization (PP), however inhibited HA at other days PP. Eight C-type lectins were differentially expressed in different host developmental stages, from feeding to wandering stage. The mRNA levels of HaCTL1, HaCTL3, HaCTL4, and HaCTL5 were upregulated and HaCTL2 and HaCTL7 were downregulated. Tissue analysis showed that HaCTLs were mainly expressed in fat body or hemocytes, while HaCTL5 was highly expressed in testes. The effects of parasitization on the lectin expression patterns differed. Lectins except HaCTL6 or HaCTL5 were significantly down- or upregulated in parasitized larvae at day 4 or 6 PP compared with that of nonparasitized larvae. We infer from our results that C-type immunlectins are involved in host-parasitoid interactions, and parasitization alter host immunlectin levels both in inhibiting and promoting host immune defenses to endoparasitoids. These immunlectin genes indicated an altered physiological status of the host insect, depending on developmental stage, tissue, and parasitization.


Assuntos
Hemaglutinação , Interações Hospedeiro-Parasita , Lectinas Tipo C/metabolismo , Mariposas/imunologia , Vespas/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Lectinas Tipo C/genética , Masculino , Mariposas/genética , Mariposas/parasitologia
4.
Arch Insect Biochem Physiol ; 90(1): 14-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25929852

RESUMO

Although lysis of invading organisms is a major innate form of immunity used by invertebrates, it remains unclear whether herbivorous insects have hemolysin or not. To address this general question, we tested the hemolytic (HL) activity of the hemolymph and tissue extracts from various stages of the polyphagous insect Helicoverpa armigera (Hübner) against the erythrocytes from chicken, duck, and rabbit. An HL activity was identified in the hemolymph of H. armigera larvae. Further studies demonstrated that the HL activity is proteinaceous as it was precipitable by deproteinizing agents. Hemolysins were found in Helicoverpa egg, larva, pupa, and adult, but the activity was higher in feeding larvae than in molting or newly molted larvae. Hemolysins were distributed among a variety of larval tissues including salivary gland, fat body, epidermis, midgut, or testes, but the highest activity was found in salivary gland and fat body. Relative to nonparasitized larvae, parasitization of H. armigera larvae by the endoparasitoid Campoletis chlorideae Uchida induced a 3.4-fold increase in the HL activity in the plasma of parasitized host at day two postparasitization. The present study shows the presence of a parasitoid inducible HL factor in the parasitized insect. The HL activity increased significantly in H. armigera larvae at 12 and 24 h postinjection with Escherichia coli. We infer the HL factor(s) is inducible or due to de novo synthesis, which means that the HL factor(s) is associated with insect immune response by inhibiting or clearance of invading organisms.


Assuntos
Proteínas Hemolisinas/imunologia , Mariposas/imunologia , Vespas/fisiologia , Animais , Galinhas , Patos , Eritrócitos/imunologia , Escherichia coli/fisiologia , Feminino , Hemolinfa/imunologia , Hemolinfa/metabolismo , Proteínas Hemolisinas/biossíntese , Imunidade Inata , Larva/imunologia , Larva/microbiologia , Larva/parasitologia , Mariposas/microbiologia , Mariposas/parasitologia , Coelhos
5.
Pest Manag Sci ; 80(3): 1145-1152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37874124

RESUMO

BACKGROUND: Combined use can be an effective measure to improve pest control by viruses and parasitic wasps. However, not all combinations of natural enemies show improved effects. Helicoverpa armigera nucleopolyhedrovirus (HearNPV) and Campoletis chlorideae Uchida are two important natural enemies of Helicoverpa armigera. This study aimed to investigate the combined effects of C. chlorideae and HearNPV against H. armigera larvae and the impact of HearNPV on C. chlorideae. RESULTS: The combination of HearNPV and C. chlorideae exerted increased mortality on H. armigera when C. chlorideae parasitized larvae one day after infection with HearNPV. C. chlorideae could distinguish between HearNPV-infected and noninfected larvae. Besides influencing host selection of C. chlorideae, HearNPV infection had negative effects on the development and reproduction of C. chlorideae. The developmental time of C. chlorideae was significantly prolonged and the percentage of emergence and adult eclosion of C. chlorideae was lower in infected hosts. The adult wasps were also smaller in body size, and female adults had fewer eggs when they developed in virus-infected hosts. CONCLUSIONS: HearNPV combined with C. chlorideae could improve the efficacy of biological control against H. armigera. The results provided valuable information on the importance of timing in the combined use of HearNPV and C. chlorideae for the biological control of H. armigera. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Nucleopoliedrovírus , Vespas , Animais , Feminino , Mariposas/parasitologia , Helicoverpa armigera , Larva
6.
Insects ; 14(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36835720

RESUMO

Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests. The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of insect immune responses. In this work, we review the current knowledge of the immune response and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in immune response reactions or resistance to Bt. This review also analyzes immune priming, which contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune responses and resistance.

7.
Insects ; 14(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37233111

RESUMO

Campoletis chlorideae has great biocontrol potential against some major noctuid pests. In order to achieve the commercial development and utilization of C. chlorideae, this study focused on the effect of rearing host species and larval instars on the ovariole number and body size of this wasp. Firstly, the morphology of the reproductive system and ovarioles of female wasps were observed. The number of ovarioles displayed great variability and asymmetry between bilateral ovaries. Moreover, the effect of four host species on ovariole number and body size of C. chlorideae were studied. The wasps had a larger ovariole number and body size when reared in Helicoverpa armigera. Additionally, the ovariole number and body size were larger when reared in the third instar larvae than in the first or second instar larvae of H. armigera. There was a strong positive correlation between the ovariole number and body size of C. chlorideae. The ovariole number and body size of the wasp could be improved under optimized artificial rearing conditions. According to these results, body size combined with ovariole number can be used as an important index to evaluate the quality of C. chlorideae. This study provides important clues for the development and application of biocontrol using C. chlorideae.

8.
Arch Insect Biochem Physiol ; 76(3): 156-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21322005

RESUMO

Two endoparasitoids, Cotesia vestalis and Oomyzus sokolowskii, parasitize the same host, larvae of Plutella xylostella. These two species have evolved different parasitization strategies. O. sokolowskii expresses a single factor, venom, and exerts virtually no detrimental effects on the development of its host. C. vestalis, on the other hand, injects polydnavirus (PDV) and venom during oviposition, and teratocytes are released into the host's hemolymph after egg hatching. Parasitization suppresses host immune reactions and redirects its developmental program. Because both these species parasitize the same stage of their hosts, there is the possibility of multiparasitism in nature. Only one species survives multiparasitism and because of its parasitic strategy, we hypothesized that C. vestalis would invariably be the stronger competitor. We designed competition experiments which revealed that C. vestalis is a stronger competitor than O. sokolowskii. We also show that C. vestalis survives intrinsic competition with O. sokolowskii through two mechanisms: physical attack and physiological suppression. We discovered melanized wounds on O. sokolowskii eggs and larvae, which is strong evidence of physical attacks. The physiological suppression is due to PDV and venom injected by C. vestalis. To test this idea more rigorously, we designed a pseudoparasitization experiment which revealed that no O. sokolowskii emerged from multiparasitized hosts when infertile C. vestlais eggs and normal O. sokolowskii larvae are both present inside the same host. These results support our hypothesis that C. vestalis is the stronger competitor and demonstrate two mechanisms that account for the outcome of intrinsic competition between these two endoparasitoids.


Assuntos
Mariposas/parasitologia , Vespas/fisiologia , Animais , Feminino , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/parasitologia , Larva/virologia , Mariposas/crescimento & desenvolvimento , Mariposas/imunologia , Mariposas/virologia , Oviposição , Polydnaviridae/fisiologia , Venenos de Vespas/farmacologia , Vespas/crescimento & desenvolvimento , Vespas/virologia
9.
Arch Insect Biochem Physiol ; 70(1): 30-43, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18949808

RESUMO

In the present study, we used gamma-ray to irradiate the female parasitoids to make wasp eggs infertile, resulting in pseudoparasitization, which allowed the analysis of maternal secretions such as polydnaviruses (PDVs) and venom in the absence of larval secretions or teratocytes by the growing parasitoids. We then investigated the spermatogenesis and components of testicular proteins of male Plutella xylostella larvae pseudoparasitized by two endoparasitoids (Cotesia vestalis and Diadegma semiclausum). The results showed that pseudoparasitism by the two endoparasitoids at the early third instar host larvae both induced smaller testes in size than those of nonparasitized host larvae. Both of them caused parasitic castration, and the degree of castration is almost as severe as in naturally parasitized hosts. This suggested that PDVs and venom played a major role in the degeneration of host testes. There are significant differences in the degree of castration induced by the two endoparasitoids, with respect to testicular growth, testicular protein concentrations, and histological changes of germ cells. Cotesia vestalis bracovirus always has a significantly stronger effect on host testicular growth and development than D. semiclausum ichnovirus. SDS-PAGE analysis indicated that synthesis of P 65 and P 67 proteins were clearly inhibited in testes of hosts that were pseudoparasitized by C. vestalis while reduction in synthesis of other proteins was not evident.


Assuntos
Mariposas/efeitos dos fármacos , Mariposas/parasitologia , Orquiectomia , Polydnaviridae/fisiologia , Venenos de Vespas/farmacologia , Vespas/fisiologia , Animais , Interações Hospedeiro-Parasita , Larva/efeitos dos fármacos , Larva/parasitologia , Masculino , Espermatogênese
10.
J Insect Physiol ; 100: 21-27, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28512014

RESUMO

Insect herbivores often secrete glucose oxidase (GOX) onto plants to counteract plant defenses and potential pathogens. Whether generalist herbivores always have significantly higher GOX activities than their specialist counterparts at any comparable stage or conditions and how this is realized remain unknown. To address these two general questions, we subjected larvae of a pair of sister species differed mainly in host range, the generalist Helicoverpa armigera and its specialist counterpart Helicoverpa assulta, to the same sets of stage, protein to digestible carbohydrate (P:C) ratio, allelochemical or host plant treatments for simultaneous analyses of GOX transcripts and activities in their labial glands. GOX activity and transcripts are upregulated concurrently with food ingestion and body growth, downregulated with stopping ingestion and wandering for pupation in both species. The three tested host plants upregulated GOX transcripts, and to a lesser extent, GOX activity in both species. There were significant differences in both GOX transcripts and activity elicited by allelochemicals, but only in GOX transcripts by P:C ratios in both species. GOX activities were higher in H. armigera than H. assulta in all the comparable treatments, but GOX transcripts were significantly higher either in generalists or in specialists, depending on the developmental stages, host plants, P:C ratio and allelochemicals they encounter. These data indicate that the greater GOX activity in generalist herbivores is not achieved by greater transcription rate, but by greater transcript stability, greater translation rate, better enzyme stability and/or their combination.


Assuntos
Expressão Gênica , Glucose Oxidase/genética , Herbivoria , Proteínas de Insetos/genética , Mariposas/fisiologia , Animais , Dieta , Comportamento Alimentar , Glucose Oxidase/metabolismo , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Especificidade da Espécie
11.
Gene ; 502(1): 1-8, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22543020

RESUMO

What has driven the sweep of the Accord retrotransposon insertion allele of CYP6G1 in the natural populations of Drosophila melanogaster is unknown. Previous studies on the DDT selection hypothesis produced conflicting data. To reexamine the DDT selection hypothesis and search for alternative explanations, we conducted a series of correlation and genetic linkage experiments with eight D. melanogaster natural populations collected from California (CM1, CM2, CM3, and CM7) and Africa (AM2, AM3, AM4, AM7). Diagnostic PCR showed that CM1, CM2, CM7, and AM3 have the Accord insertion in the CYP6G1 locus, whereas the other four strains do not. RT-PCR analysis exhibits a 100% correlation between Accord insertion and CYP6G1 overexpression. However, among the four strains with Accord-mediated CYP6G1 overexpression only CM1 and CM7 are resistant to DDT, and the other two strains (CM2 and AM3), like the four Accord-free strains, are susceptible to DDT. By contrast, all the four strains with Accord-mediated CYP6G1 overexpression are resistant to nicotine, a plant allelochemical. Genetic crosses between DDT resistant and susceptible Accord-insertion strains, as well as crosses between Accord-insertion and Accord-free strains demonstrated that Accord insertion and CYP6G1 overexpression are genetically linked to nicotine resistance rather than DDT resistance. These results suggest that naturally-occurring allelochemicals such as nicotine are the initial driving force for the worldwide prevalence of the Accord insertion allele of CYP6G1 in D. melanogaster natural populations.


Assuntos
Região 5'-Flanqueadora , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Nicotina/farmacologia , Feromônios/farmacologia , Retroelementos , Animais , DDT/farmacologia , Análise Mutacional de DNA , Drosophila melanogaster/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Ligação Genética , Inseticidas/farmacologia , Masculino , Mutagênese Insercional , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA