Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 38(4): 2077-2093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558449

RESUMO

Cisplatin-induced kidney injury (CKI) is a common complication of chemotherapy. Fraxetin, derived from Fraxinus bungeana A. DC. bark, has antioxidant, anti-inflammatory, and anti-fibrotic effects. This study aims to investigate fraxetin's effects on CKI and its underlying mechanism in vivo and in vitro. Tubular epithelial cells (TECs) and mice were exposed to cisplatin with and without fraxetin preconditioning assess fraxetin's role in CKI. TECs autophagy was observed using transmission electron microscopy. Apoptosis levels in animal tissues were measured using TUNEL staining. The protective mechanism of fraxetin was explored through pharmacological and genetic regulation of mTORC1. Molecular docking was used to identify potential binding sites between fraxetin and mTORC1. The results indicated that fraxetin pretreatment reduced cisplatin-induced kidney injury in a time- and concentration-dependent way. Fraxetin also decreased autophagy in TECs, as observed through electron microscopy. Tissue staining confirmed that fraxetin pretreatment significantly reduced cisplatin-induced apoptosis. Inhibition of mTORC1 using rapamycin or siRNA reversed the protective effects of fraxetin on apoptosis and autophagy in cisplatin-treated TECs, while activation of mTORC1 enhanced fraxetin's protective effect. Molecular docking analysis revealed that fraxetin can bind to HEAT-repeats binding site on mTORC1 protein. In  summary, fraxetin pretreatment alleviates CKI by antagonizing autophagy and apoptosis via mTORC1 activation. This provides evidence for the potential therapeutic application of fraxetin in CKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Cumarínicos , Camundongos , Animais , Cisplatino/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Simulação de Acoplamento Molecular , Rim , Autofagia , Apoptose , Injúria Renal Aguda/induzido quimicamente
2.
Artigo em Inglês | MEDLINE | ID: mdl-38145498

RESUMO

OBJECTIVES: To evaluate the differences in efficacy and safety between Lupus Nephritis (LN) patients who received belimumab plus standard therapy and those who received only standard therapy in real world practice. METHODS: Patients diagnosed with LN at the First Affiliated Hospital of Wenzhou Medical University from November 2012 to July 2023 were identified, and eligible cases were divided into two groups according to whether they received additional treatment with belimumab during the course of the disease. RESULTS: A total of 1,169 LN patients were identified from our follow-up database. 112 patients receiving add-on treatment with belimumab (BLM group) and 112 control patients matched for relevant baseline characteristics were enrolled in this study. The median duration of treatment with belimumab was 13.82 [7.24, 20.29] months. Compared with the control group, the BLM group had more significant improvement in disease activity indicators such as serum albumin and complement levels, significantly lower B cell count, immunoglobulin, and earlier first attainment of renal remission, but there was no significant improvement in renal function and kidney-related events or death during the 2-year follow-up period. In the BLM group, the treatment effect of belimumab was more prominent in patients with lower levels of proteinuria. The safety profile of belimumab treatment was favorable, with a lower incidence of respiratory tract infection in the BLM group than in the control group during the follow-up period (p= 0.015). CONCLUSIONS: This real-world study revealed that add-on treatment with belimumab provided better disease remission, and the therapeutic effect was more significant in patients with lower proteinuria levels. In addition, it had a favorable safety profile and reduced the risk of respiratory tract infection.

3.
Cell Biol Toxicol ; 39(6): 2587-2613, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695953

RESUMO

The primary symptom of diabetic encephalopathy (DE), a kind of central diabetic neuropathy caused by diabetes mellitus (DM), is cognitive impairment. In addition, the tetracyclic oxindole alkaloid isorhynchophylline (IRN) helps lessen cognitive impairment. However, it is still unclear how IRN affects DM and DE and what mechanisms are involved. The effectiveness of IRN on brain insulin resistance was carefully examined in this work, both in vitro and in vivo. We found that IRN accelerates spliced form of X-box binding protein 1 (sXBP1) translocation into the nucleus under high glucose conditions in vitro. IRN also facilitates the nuclear association of pCREB with sXBP1 and the binding of regulatory subunits of phosphatidylinositol 3-kinase (PI3K) p85α or p85ß with XBP1 to restore high glucose impairment. Also, IRN treatment improves high glucose-mediated impairment of insulin signaling, endoplasmic reticulum stress, and pyroptosis/apoptosis by depending on sXBP1 in vitro. In vivo studies suggested that IRN attenuates cognitive impairment, ameliorating peripheral insulin resistance, activating insulin signaling, inactivating activating transcription factor 6 (ATF6) and C/EBP homology protein (CHOP), and mitigating pyroptosis/apoptosis by stimulation of sXBP1 nuclear translocation in the brain. In summary, these data indicate that IRN contributes to maintaining insulin homeostasis by activating sXBP1 in the brain. Thus, IRN is a potent antidiabetic agent as well as an sXBP1 activator that has promising potential for the prevention or treatment of DE.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Humanos , Oxindóis/farmacologia , Proteína 1 de Ligação a X-Box , Fosfatidilinositol 3-Quinases , Estresse do Retículo Endoplasmático , Insulina , Glucose , Diabetes Mellitus/tratamento farmacológico
4.
Inflammopharmacology ; 30(2): 487-498, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35235107

RESUMO

Lipoxin A4 (LXA4) has been shown to have anti-inflammatory activity, but its underlying molecular mechanisms are not clear. Herein, we investigated the potential role of LXA4 in macrophage polarization and elucidated its possible molecular mechanism. The RAW264.7 macrophage cell line was pretreated with LXA4 with or without lipopolysaccharides (LPSs) and interleukin-4 (IL-4). In cultured macrophages, LXA4 inhibited LPS-induced inflammatory polarization, thereby decreasing the release of proinflammatory cell factors (IL-1ß, IL-6, TNF-α) and increasing the release of anti-inflammatory cytokines (IL-4 and IL-10). Notably, the inhibitory effect of LXA4 on inflammatory macrophage polarization was related to the downregulation of p-NF-κB p65 and IRF5 activity, which reduced the LPS-induced phenotypic and functional polarization of M1 macrophages via the FPR2/IRF5 signaling pathway. Moreover, LXA4 also induced the IL-4-induced polarization of M2 macrophages by promoting the FPR2/IRF4 signaling pathway. Therefore, LXA4 regulates M1/M2 polarization of macrophages via the FPR2-IRF pathway.


Assuntos
Lipoxinas , Lipopolissacarídeos/farmacologia , Lipoxinas/metabolismo , Lipoxinas/farmacologia , Ativação de Macrófagos , Macrófagos
5.
Lupus ; 30(14): 2248-2255, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34923866

RESUMO

OBJECTIVE: Lupus nephritis (LN) is a major end-organ complication of systemic lupus erythematosus (SLE), and the molecular mechanism of LN is not completely clear. Accumulating pieces of evidence indicate the potential vital role of tRNA-derived small RNAs (tsRNAs) in human diseases. Current study aimed to investigate the potential roles of tsRNAs in LN. METHODS: We herein employed high-throughput sequencing to screen the expression profiles of tsRNAs in renal tissues of the LN and control groups. To validate the sequencing data, we performed quantitative real-time PCR (qRT-PCR) analysis. Correlational analysis of verified tsRNAs expression and clinical indicators was conducted using linear regression. The potential target genes were also predicted. The biological functions of tsRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: Our findings revealed that the expression profiles of tsRNAs were significantly altered in the kidney tissues from LN patients compared with control. Overall, 160 tsRNAs were significantly dysregulated in the LN group, of which 79 were upregulated, whereas 81 were downregulated. Subsequent qRT-PCR results confirmed the different expression of candidate tsRNAs. Correlation analysis results found that expression of verified tsRNAs were correlated to clinical indicators. The target prediction results revealed that verified tsRNAs might act on 712 target genes. Further bioinformatics analysis uncovered tsRNAs might participate in the pathogenesis of LN through several associated pathways, including cell adhesion molecules, MAPK signaling pathway, PI3K-Akt signaling pathway and B cell receptor signaling pathway. CONCLUSION: This study provides a novel insight for studying the mechanism of LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Fosfatidilinositol 3-Quinases/genética , Ontologia Genética , Humanos , Nefrite Lúpica/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , RNA de Transferência/genética
6.
Cell Biol Toxicol ; 37(3): 479-496, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33070227

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is an aggressive type of malignant tumor with a poor prognosis and high mortality. Aberrant activation of hedgehog signaling plays a crucial role in the maintenance and progression of PDA. Here, we report that the dietary bioflavonoid quercetin has therapeutic potential for PDA by targeting sonic hedgehog (SHH) signaling. The effects of quercetin on the proliferation, apoptosis, migration, and invasion of pancreatic cancer cells (PCCs) and tumor growth and metastasis in PDA xenograft mouse models were evaluated. Additionally, SHH signaling activity was determined. Quercetin significantly inhibited PCC proliferation by downregulating c-Myc expression. In addition, quercetin suppressed epithelial-mesenchymal transition (EMT) by reducing TGF-ß1 level, which resulted in inhibition of PCC migration and invasion. Moreover, quercetin induced PCC apoptosis through mitochondrial and death receptor pathways. In nude mouse models, PDA growth and metastasis were reduced by quercetin treatment. Mechanically, quercetin exerts its therapeutic effects on PDA by decreasing SHH activity. Interestingly, quercetin-induced SHH inactivation is mainly dependent on Gli2, but not Gli1. Enhance SHH activity by recombinant Shh protein abolished the quercetin-mediated inhibition of PCC proliferation, migration, and invasion. Furthermore, Shh activated TGF-ß1/Smad2/3 signaling and promoted EMT by inducing the expression of Zeb2 and Snail1 that eventually resulted in a partial reversal of quercetin-mediated inhibition of PCC migration and invasion. We conclude that quercetin inhibited the growth, migration, and invasion and induced apoptosis of PCCs by antagonizing SHH and TGF-ß/Smad signaling pathways. Thus, quercetin may be a potential candidate for PDA treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Hedgehog/genética , Quercetina/farmacologia , Fator de Crescimento Transformador beta1/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Proteínas Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad3/genética , Proteína Gli2 com Dedos de Zinco/genética
7.
J Cell Mol Med ; 24(19): 11307-11317, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32841502

RESUMO

Lipopolysaccharide (LPS) is an endotoxin involved in a number of acute and chronic inflammatory syndromes. Although LPS-induced signalling has been extensively studied, there are still mysteries remaining to be revealed. In the current study, we used high-throughput phosphoproteomics to profile LPS-initiated signalling and aimed to find novel mediators. A total of 448 phosphoproteins with 765 phosphorylation sites were identified, and we further validated that the phosphorylation of MARK2 on T208 was important for the regulation on LPS-induced CXCL15 (human IL-8 homolog), IL-1ß, IL-6 and TNF-α release, in which LKB1 had a significant contribution. In summary, induction of cytokines by LPS in mouse macrophage is regulated by LKB1-MARK2 signals. Our study provides new clues for further exploring the underlying mechanisms of LPS-induced diseases, and new therapeutic approaches concerning bacterial infection may be derived from these findings.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP , Animais , Quimiocinas CXC/metabolismo , Células HeLa , Humanos , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Fatores de Transcrição/metabolismo
8.
Cell Biochem Funct ; 38(3): 283-289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943290

RESUMO

Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.


Assuntos
Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/efeitos da radiação , Radiação Ionizante , Motivos de Aminoácidos , Dano ao DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Glicosilação/efeitos da radiação , Humanos , Metilação/efeitos da radiação , Neoplasias/radioterapia , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Ubiquitinação/efeitos da radiação
9.
Cell Commun Signal ; 17(1): 145, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718671

RESUMO

BACKGROUND: Notch1 signalling is a stem-cell-related pathway that is essential for embryonic development, tissue regeneration and organogenesis. However, the role of Notch1 in the formation of myofibroblasts and fibrosis in kidneys following injury remains unknown. METHODS: The activity of Notch1 signalling was evaluated in fibrotic kidneys in CKD patients and in ureteral obstructive models in vivo and in cultured fibroblasts and TECs in vitro. In addition, the crosstalk of Notch1 with TGF-ß1/Smad2/3 signalling was also investigated. RESULTS: Notch1 activity was elevated in fibrotic kidneys of rat models and patients with chronic kidney disease (CKD). Further study revealed that epithelial and interstitial Notch1 activity correlated with an α-SMA-positive myofibroblastic phenotype. In vitro, injury stimulated epithelial Notch1 activation and epithelial-mesenchymal transition (EMT), resulting in matrix deposition in tubular epithelial cells (TECs). Additionally, interstitial Notch1 activation in association with fibroblast-myofibroblast differentiation (FMD) in fibroblasts mediated a myofibroblastic phenotype. These TGF-ß1/Smad2/3-dependent phenotypic transitions were abolished by Notch1 knockdown or a specific antagonist, DAPT, and were exacerbated by Notch1 overexpression or an activator Jagged-1-Fc chimaera protein. Interestingly, as a major driving force behind the EMT and FMD, TGF-ß1, also induced epithelial and interstitial Notch1 activity, indicating that TGF-ß1 may engage in crosstalk with Notch1 signalling to trigger fibrogenesis. CONCLUSION: These findings suggest that epithelial and interstitial Notch1 activation in kidneys following injury contributes to the myofibroblastic phenotype and fibrosis through the EMT in TECs and to the FMD in fibroblasts by targeting downstream TGF-ß1/Smad2/3 signalling.


Assuntos
Diaminas/farmacologia , Células Epiteliais/efeitos dos fármacos , Fibrose/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Receptor Notch1/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Masculino , Miofibroblastos/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Mediators Inflamm ; 2016: 2174682, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313397

RESUMO

Background. Macrophage migration inhibitory factor (MIF) is an important immunoregulatory cytokine involved in inflammation, which may be one important reason resulting in matrix deposition in renal tissues after injury. However, the underlying mechanisms have not yet been elucidated. Methods and Results. We uncovered a crucial role of MIF in inflammation and collagen deposition in vivo and in vitro. In rats, ureteral obstruction induced tubular injury, matrix accumulation, and inflammatory cell infiltration. Additionally, enhanced MIF levels in the obstructed kidneys were closely related to the increasing numbers of CD68-positive macrophages. These obstruction-induced injuries can be relieved by recanalization, consequently resulting in downregulated expression of MIF and its receptor CD74. Similarly, ischemia reperfusion induced renal injury, and it was accompanied by elevated MIF levels and macrophages infiltration. In cultured tubular epithelial cells (TECs), aristolochic acid (AA) promoted matrix production and increased MIF expression, as well as the release of macrophage-related factors. Inhibition of MIF with an antagonist ISO-1 resulted in the abolishment of these genotypes in AA-treated TECs. Conclusion. MIF plays an important role in macrophage-related inflammation and matrix deposition in kidney tissues following injury. MIF as a specific inhibitor may have therapeutic potential for patients with inflammatory and fibrotic kidney diseases.


Assuntos
Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Rim/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Ácidos Aristolóquicos/farmacologia , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Imunofluorescência , Imuno-Histoquímica , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Rim/imunologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Obstrução Ureteral/metabolismo
11.
Mol Pharmacol ; 87(2): 174-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395043

RESUMO

The Hedgehog (Hh) signaling pathway plays a key role during embryogenesis and tissue regeneration. Recently, studies revealed that overactivated Hh signaling leads to fibrogenesis in many types of tissues. The activation of Hh signaling is involved in the epithelial-mesenchymal transition and excessive extracellular matrix deposition. Blockade of Hh signaling abolishes the induction of the epithelial-mesenchymal transition and ameliorates tissue fibrosis. Therefore, new therapeutic targets to alleviate fibrosis based on the Hh signaling have attracted a great deal of attention. This is a new strategy for treating fibrosis and other related diseases. In this review, we discuss the crucial role of Hh signaling in fibrogenesis to provide a better understanding of their relationship and to encourage the study of novel targeted therapies.


Assuntos
Fibrose/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Animais , Fibrose/genética , Fibrose/patologia , Proteínas Hedgehog/genética , Humanos
12.
J Pharmacol Sci ; 124(4): 445-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24671054

RESUMO

Aristolochic acid (AA) is known as a potent mutagen that induces significant cytotoxic and mutagenic effects on renal tubular epithelial cells. Clinically, the persistent injury of AA results in the infiltration of inflammatory cells, epithelial-to-mesenchymal transition (EMT), and renal tubulointerstitial fibrosis. There are no truly effective pharmaceuticals. In this study, we investigated the potential role of the extract of Sedum sarmentosum Bunge (SSB), a traditional Chinese herbal medicine, on rat tubuloepithelial (NRK-52E) cells after AA injury in vitro. Evidence revealed that AA induced mitochondrial-pathway-mediated cellular apoptosis, accompanied by cell proliferation in a feedback mechanism. Treatment with SSB also induced cells to enter early apoptosis, but inhibited cell proliferation. In cultured NRK-52E cells, AA induced the imbalance of MMP-2/TIMP-2 and promoted EMT and ECM accumulation. SSB treatment significantly alleviated AA-induced NRK-52E cells fibrosis-like appearance, inhibited the induction of EMT, and deposition of ECM. SSB also decreased the activity of the NF-κB signaling pathway, resulting in down-regulated expression of NF-κB-controlled chemokines and pro-inflammatory cytokines, including MCP-1, MIF, and M-CSF, which may regulate the macrophage-mediated inflammatory reaction during renal fibrosis in vivo. Therefore, these findings suggest that SSB exerts protective effects against AA-induced tubular epithelial cells injury through suppressing the synthesis of inflammatory factors, EMT, and ECM production.


Assuntos
Ácidos Aristolóquicos/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/citologia , Mutagênicos/toxicidade , Extratos Vegetais/farmacologia , Sedum , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Fibrose , Inflamação , Metaloproteinase 2 da Matriz/metabolismo , Ratos , Inibidor Tecidual de Metaloproteinase-2/metabolismo
13.
Comput Struct Biotechnol J ; 23: 1189-1200, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38525105

RESUMO

Pancreatic cancer (PC) is an aggressive and metastatic gastrointestinal tumor with a poor prognosis. Persistent activation of the TGF-ß/Smad signaling induces PC cell (PCC) invasion and infiltration via epithelial-to-mesenchymal transition (EMT). Hedgehog signaling is a crucial pathway for the development of PC via the transcription factors Gli1/2/3. This study aimed to investigate the underlying molecular mechanisms of action of hedgehog activation in TGF-ß1-triggered EMT in PCCs (PANC-1 and BxPc-3). In addition, overexpression and shRNA techniques were used to evaluate the role of Smad4 in TGF-ß1-treated PCCs. Our data showed that TGF-ß1 promoted PCC invasion and infiltration via Smad2/3-dependent EMT. Hedgehog-Gli signaling axis in PCCs was activated upon TGF-ß1 stimulation. Inhibition of hedgehog with cyclopamine effectively antagonized TGF-ß1-induced EMT, thereby suggesting that the hedgehog signaling may act as a downstream cascade signaling of TGF-ß1. As a key protein that assists the nuclear translocation of Smad2/3, Smad4 was highly expressed in PANC-1 cells, but not in BxPc-3 cells. Conversely, Gli1 expression was low in PANC-1 cells, but high in BxPc-3 cells. Furthermore, knockdown of Smad4 in PANC-1 cells by shRNA inhibited TGF-ß1-mediated EMT and collagen deposition. Overexpression of Smad4 did not affect TGF-ß1-mediated EMT due to the lack of significant increase in nuclear expression of Smad4. Importantly, Gli1 activity was upregulated by Smad4 knockdown in PANC-1 cells and downregulated by Smad4 overexpression in BxPc-3 cells, indicating that Gli1 may be a negative target protein downstream of Smad4. Thus, Smad4 regulates TGF-ß1-mediated hedgehog activation to promote EMT in PCCs by suppressing Gli1 activity.

14.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381715

RESUMO

Renal fibrosis plays a crucial role in the progression of renal diseases, yet the lack of effective diagnostic markers poses challenges in scientific and clinical practices. In this study, we employed machine learning techniques to identify potential biomarkers for renal fibrosis. Utilizing two datasets from the GEO database, we applied LASSO, SVM-RFE and RF algorithms to screen for differentially expressed genes related to inflammatory responses between the renal fibrosis group and the control group. As a result, we identified four genes (CCL5, IFITM1, RIPK2, and TNFAIP6) as promising diagnostic indicators for renal fibrosis. These genes were further validated through in vivo experiments and immunohistochemistry, demonstrating their utility as reliable markers for assessing renal fibrosis. Additionally, we conducted a comprehensive analysis to explore the relationship between these candidate biomarkers, immunity, and drug sensitivity. Integrating these findings, we developed a nomogram with a high discriminative ability, achieving a concordance index of 0.933, enabling the prediction of disease risk in patients with renal fibrosis. Overall, our study presents a predictive model for renal fibrosis and highlights the significance of four potential biomarkers, facilitating clinical diagnosis and personalized treatment. This finding presents valuable insights for advancing precision medicine approaches in the management of renal fibrosis.Communicated by Ramaswamy H. Sarma.

15.
Phytomedicine ; 132: 155813, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38905846

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE: This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS: The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS: Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS: Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.

16.
Int Immunopharmacol ; 137: 112450, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906007

RESUMO

Inflammation, apoptosis and oxidative stress play crucial roles in the deterioration of severe acute pancreatitis-associated acute respiratory distress syndrome (SAP-ARDS). Unfortunately, despite a high mortality rate of 45 %[1], there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies[2]. This study investigated the potential therapeutic role and mechanisms of AQP9 inhibitor RG100204 in two animal models of severe acute pancreatitis, inducing acute respiratory distress syndrome: 1) a sodium-taurocholate induced rat model, and 2) and Cerulein and lipopolysaccharide induced mouse model. RG100204 treatment led to a profound reduction in inflammatory cytokine expression in pancreatic, and lung tissue, in both models. In addition, infiltration of CD68 + and CD11b + cells into these tissues were reduced in RG100204 treated SAP animals, and edema and SAP associated tissue damage were improved. Moreover, we demonstrate that RG100204 reduced apoptosis in the lungs of rat SAP animals, and reduces NF-κB signaling, NLRP3, expression, while profoundly increasing the Nrf2-dependent anti oxidative stress response. We conclude that AQP9 inhibition is a promising strategy for the treatment of pancreatitis and its systemic complications, such as ARDS.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pancreatite , Síndrome do Desconforto Respiratório , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Ratos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Aquaporinas/metabolismo , Aquaporinas/antagonistas & inibidores , Modelos Animais de Doenças , Ratos Sprague-Dawley , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Ácido Taurocólico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ceruletídeo , Humanos , Heme Oxigenase (Desciclizante)/metabolismo
17.
Biomaterials ; 311: 122710, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39053036

RESUMO

Low-expression antigens, especially neoantigens, pose a significant challenge in immunotherapy for low immunogenicity pancreatic cancer. Increasing the tumor mutation burden is crucial to enhance the expression of tumor antigens and improve tumor immunogenicity. However, the incomplete intervention in DNA stability hampers effective elevation of the tumor mutation burden, thus reducing the probability of neoantigen. To address this issue, we have developed a novel nano-regulator that intervenes in the DNA stability of tumor cells, thereby enhancing tumor mutations. This nano-regulator comprises metal-organic frameworks (MOFs) encapsulating DNA damage agent doxorubicin and DNA damage repair inhibitor siRNA-ATR, enabling simultaneous induction of DNA mutations and inhibition of their repair. Importantly, this regulator, named as MOFDOX&siATR, can modulate the tumor gene expression profile, induce the production of neoantigens of Atp8b1, and enhance the immunogenicity of pancreatic cancer. The characteristics of DNA stability intervention by MOFDOX&siATR hold promise for augmenting the immune response in low immunogenic tumors, making it a potential nanomedicine for the treatment of pancreatic cancer.

18.
Zhonghua Yi Xue Za Zhi ; 93(12): 888-91, 2013 Mar 26.
Artigo em Zh | MEDLINE | ID: mdl-23863670

RESUMO

OBJECTIVE: To explore the clinical value of miRNA-29b expression and the combined detection of serum miRNA-29b and alpha-fetoprotein (AFP) in the diagnosis of primary hepatic carcinoma(PHC). METHODS: From January 2007 to May 2010, the serum levels of miRNA-29b and AFP from 96 healthy controls and 87 PHC patients were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) respectively. The relationship of miRNA-29b and various clinical parameters was analyzed. RESULTS: Serum levels of miRNA-29b in PHC pre-operative group (0.250 (0.124 - 0.381)) significantly decreased versus the control group [0.860 (0.587 - 1.338)] and the post-operative group (0.890 (0.637 - 1.414)) (P < 0.001). Also, the levels of AFP in PHC pre-operative group (65.4 (20.1 - 212.3)) was obviously higher than that in the control group (13.3 (7.1 - 19.8)) and the post-operative group (23.2 (11.6 - 55.7)) (P < 0.001). A lower expression of miRNA-29b was correlated with lower differentiation and higher TNM stages (P < 0.045, P < 0.001). Kaplan-Meier curve analysis revealed that PHC patients with a low serum expression of miRNA-29b had a significantly shortened overall survival when compared with a high serum expression of miRNA-29b (25.52 vs 36.94 months, P = 0.008). Multivariable Cox regression analysis indicated that the serum expression of miRNA-29b was an independent risk factor for overall survival. Relative risk was 0.482 (95% confidence interval: 0.236 - 0.985). The critical values for miRNA-29b and AFP were determined at 0.38 and 23.1 µg/L through the ROC curves. Under the critical value, the sensitivity of miRNA-29b and AFP were 75.9% and 70.1% and the specificity of miRNA-29b and AFP 89.5% and 92.7% respectively. Combined detection could increase the sensitivity up to 87.3%, and achieve a specificity of 88.5%. CONCLUSION: The combined detection of miRNA-29b and AFP aids the diagnosis of PHC and the prediction of its prognosis.


Assuntos
Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , MicroRNAs/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , alfa-Fetoproteínas/metabolismo
19.
Eur J Pharmacol ; 957: 176035, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657741

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed cancer among men and the second leading cause of death in Western countries. Clinically, screening drugs and develop developing new therapeutics to treat PCa is of great significance. In this study, BML-275 was demonstrated to exert potent antitumor effects in PCa by antagonizing mTOR activity. In cultured PCa cells, BML-275 treatment reduced the expression levels of c-Myc and survivin, promoted the activation of p53, and thereby induced p21/cyclin D1/CDK4/6-dependent cell cycle G1/S arrest. As a result, BML-275 inhibited cellular proliferation and induced mitochondrial-mediated apoptosis. In addition, BML-275 treatment triggered autophagy. Interestingly, EACC-mediated suppression of autophagy did not affect BML-275-induced proliferation and apoptosis. Nude mouse tumorigenic experiments also confirmed that BML-275 inhibited PCa growth, induced PCa cell apoptosis and autophagy. Mechanistically, the activities of PI3K/AKT and AMPK pathways were downregulated by BML-275 treatment in vitro and in vivo. Importantly, mTOR, a common downstream negative protein of PI3K/AKT and AMPK signaling, was induced to inactivate, which may be associated with the induction of apoptosis and autophagy. The pharmacological activation of mTOR by MHY1485 abolished the induction of apoptosis and autophagy of BML-275. Molecular docking results showed that BML-275 can bind to the FKRP12-rapamycin binding site on mTOR protein, and thereby may have the same inhibitory activity on mTOR as rapamycin. Thus, these findings indicated that BML-275 induces mitochondrial-mediated apoptosis and autophagy in PCa by targeting mTOR inhibition. BML-275 may be a potential candidate for the treatment of PCa.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Serina-Treonina Quinases TOR , Autofagia
20.
Prog Mol Biol Transl Sci ; 199: 271-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37678974

RESUMO

It is urgent to prepare and store large numbers of clinical trial grade human pluripotent stem (hPS) cells for off-the-shelf use in stem cell therapies. However, stem cell banks, which store off-the-shelf stem cells, need financial support and large amounts of technicians for daily cell maintenance. Therefore, it is valuable to create "universal" or "hypoimmunogenic" hPS cells with genome editing engineering by knocking in or out immune-related genes. Only a small number of universal or hypoimmunogenic hPS cell lines should be needed to store for off-the-shelf usage and reduce the large amounts of instruments, consumables and technicians. In this article, we consider how to create hypoimmunogenic or universal hPS cells as well as the demerits of the technology. ß2-Microglobulin-knockout hPS cells did not harbor human leukocyte antigen (HLA)-expressing class I cells but led to the activation of natural killer cells. To escape the activities of macrophages and natural killer cells, homozygous hPS cells having a single allele of an HLA class I gene, such as HLA-C, were proposed. Major HLA class Ia molecules were knocked out, and CD47, HLA-G and PD-L1 were knocked in hPS cells utilizing CRISPR/Cas9 genome editing. Finally, some researchers are trying to generate universal hPS cells without genome editing. The cells evaded the activation of not only T cells but also macrophages and natural killer cells. These universal hPS cells have high potential for application in cell therapy.


Assuntos
Células-Tronco Pluripotentes , Transplante de Células-Tronco , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/metabolismo , Antígenos HLA , Humanos , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Edição de Genes , Técnicas de Introdução de Genes , Animais , Imunologia de Transplantes , Bancos de Espécimes Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA