Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 23(1): 27, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553771

RESUMO

BACKGROUND: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing blaKPC and blaNDM poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospital, with a focus on blaKPC and blaNDM dual-positive hvKP strains. METHODS: Five CR-hvKP strains were isolated from a teaching hospital in China. Antimicrobial susceptibility and plasmid stability testing, plasmid conjugation, pulsed-field gel electrophoresis, and whole-genome sequencing (WGS) were performed to examine the mechanisms of resistance and virulence. The virulence of CR-hvKP was evaluated through serum-killing assay and Galleria mellonella lethality experiments. Phylogenetic analysis based on 16 highly homologous carbapenem-resistant K. pneumoniae (CRKP) producing KPC-2 isolates from the same hospital was conducted to elucidate the potential evolutionary pathway of CRKP co-producing NDM and KPC. RESULTS: WGS revealed that five isolates individually carried three unique plasmids: an IncFIB/IncHI1B-type virulence plasmid, IncFII/IncR-type plasmid harboring KPC-2 and IncC-type plasmid harboring NDM-1. The conjugation test results indicated that the transference of KPC-2 harboring IncFII/IncR-type plasmid was unsuccessful on their own, but could be transferred by forming a hybrid plasmid with the IncC plasmid harboring NDM. Further genetic analysis confirmed that the pJNKPN26-KPC plasmid was entirely integrated into the IncC-type plasmid via the copy-in route, which was mediated by TnAs1 and IS26. CONCLUSION: KPC-NDM-CR-hvKP likely evolved from a KPC-2-CRKP ancestor and later acquired a highly transferable blaNDM-1 plasmid. ST11-KL64 CRKP exhibited enhanced plasticity. The identification of KPC-2-NDM-1-CR-hvKP highlights the urgent need for effective preventive strategies against aggravated accumulation of resistance genes.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Filogenia , Saúde Pública , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Hospitais de Ensino , Plasmídeos/genética , Antibacterianos/farmacologia
2.
Ann Clin Microbiol Antimicrob ; 23(1): 14, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350903

RESUMO

PURPOSE: This study aimed to characterise the whole-genome structure of two clinical Klebsiella pneumoniae strains co-harbouring mcr-8.1 and tmexCD1-toprJ1, both resistant to colistin and tigecycline. METHODS: K. pneumoniae strains TGC-02 (ST656) and TGC-05 (ST273) were isolated from urine samples of different patients hospitalised at separate times in 2021. Characterisation involved antimicrobial susceptibility testing (AST), conjugation assays, whole-genome sequencing (WGS), and bioinformatics analysis. Comparative genomic analysis was conducted on mcr-8.1-carrying and tmexCD1-toprJ1-carrying plasmids. RESULTS: Both K. pneumoniae isolates displayed a multidrug-resistant phenotype, exhibiting resistance or reduced susceptibility to ampicillin, ampicillin/sulbactam, cefazolin, aztreonam, amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, apramycin, tigecycline and colistin. WGS analysis revealed that clinical strain TGC-02 carried the TmexCD1-toprJ1 gene on a 200-Kb IncFII/IncFIB-type plasmid, while mcr-8 was situated on a 146-Kb IncFII-type plasmid. In clinical strain TGC-05, TmexCD1-toprJ1 was found on a 300-Kb IncFIB/IncHI1B/IncR-type plasmid, and mcr-8 was identified on a 137-Kb IncFII/IncFIA-type plasmid. Conjugation experiments assessed the transferability of these plasmids. While transconjugants were not obtained for TGC-05 despite multiple screening with tigecycline or colistin, pTGC-02-tmex and pTGC-02-mcr8 from clinical K. pneumoniae TGC-02 demonstrated self-transferability through conjugation. Notably, the rearrangement of pTGC-02-tmex and pTGC-02-mcr8 via IS26-based homologous recombination was observed. Moreover, the conjugative and fusion plasmids of the transconjugant co-harboured the tmexCD1-toprJ1 gene cluster and mcr-8.1, potentially resulting from IS26-based homologous recombination. CONCLUSION: The emergence of colistin- and tigecycline-resistant K. pneumoniae strains is concerning, and effective surveillance measures should be implemented to prevent further dissemination.


Assuntos
Amicacina , Colistina , Humanos , Colistina/farmacologia , Tigeciclina , Ampicilina , Aztreonam , Klebsiella pneumoniae/genética , Plasmídeos/genética , Antibacterianos/farmacologia
3.
BMC Neurosci ; 24(1): 37, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474902

RESUMO

Hydrogen (H2) can protect against blood‒brain barrier (BBB) damage in sepsis-associated encephalopathy (SAE), but the mechanism is still unclear. We examined whether it is related to PPARα and its regulatory targets, ABC efflux transporters. After injection with DMSO/GW6471 (a PPARα inhibitor), the mice subjected to sham/caecal ligation and puncture (CLP) surgery were treated with H2 for 60 min postoperation. Additionally, bEnd.3 cells were grown in DMSO/GW6471-containing or saline medium with LPS. In addition to the survival rates, cognitive function was assessed using the Y-maze and fear conditioning tests. Brain tissues were stained with TUNEL and Nissl staining. Additionally, inflammatory mediators (TNF-α, IL-6, HMGB1, and IL-1ß) were evaluated with ELISA, and PPARα, ZO-1, occludin, VE-cadherin, P-gp, BCRP and MRP2 were detected using Western blotting. BBB destruction was assessed by brain water content and Evans blue (EB) extravasation. Finally, we found that H2 improved survival rates and brain dysfunction and decreased inflammatory cytokines. Furthermore, H2 decreased water content in the brain and EB extravasation and increased ZO-1, occludin, VE-cadherin and ABC efflux transporters regulated by PPARα. Thus, we concluded that H2 decreases BBB permeability to protect against brain dysfunction in sepsis; this effect is mediated by PPARα and its regulation of ABC efflux transporters.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Barreira Hematoencefálica , PPAR alfa , Hidrogênio/farmacologia , Transportadores de Cassetes de Ligação de ATP , Células Endoteliais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Ocludina , Dimetil Sulfóxido , Proteínas de Neoplasias , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia
4.
Opt Lett ; 48(22): 5843-5846, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966733

RESUMO

The terahertz (THz) band has a great potential for the development of communication technology, but it has not been fully utilized due to the lack of practical devices, especially actively controllable multifunctional devices. Here, we propose and demonstrate a Ge2Sb2Te5 (GST)-based metamaterial device, where an actively controllable function is experimentally verified by inducing the crystallization process with thermal activation. Cross-polarization conversion in the reflection mode and circular-to-linear polarization conversion in the transmission mode are obtained under crystalline and amorphous GST conditions, respectively. The combination of GST and THz waves has a wide range of applications and will further advance the THz field.

5.
Chemistry ; 29(25): e202300005, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596720

RESUMO

Large-scale synthesis of GM1, an important ganglioside in mammalian cells especially those in the nervous system, is needed to explore its therapeutic potential. Biocatalytic production is a promising platform for such a purpose. We report herein the development of process engineering and glycosyltransferase improvement strategies to advance chemoenzymatic total synthesis of GM1. Firstly, a new short route was developed for chemical synthesis of lactosylsphingosine from the commercially available Garner's aldehyde. Secondly, two glycosyltransferases including Campylobacter jejuni ß1-4GalNAcT (CjCgtA) and ß1-3-galactosyltransferase (CjCgtB) were improved on their soluble expression in E. coli and enzyme stability by fusing with an N-terminal maltose binding protein (MBP). Thirdly, the process for enzymatic synthesis of GM1 sphingosines from lactosylsphingosine was engineered by developing a multistep one-pot multienzyme (MSOPME) strategy without isolating intermediate glycosphingosines and by adding a detergent, sodium cholate, to the later enzymatic glycosylation steps. Installation of a desired fatty acyl chain to GM1 glycosphingosines led to the formation of target GM1 gangliosides. The combination of glycosyltransferase improvement with chemical and enzymatic process engineering represents a significant advance in obtaining GM1 gangliosides containing different sialic acid forms by total chemoenzymatic synthesis in a short route and with high efficiency.


Assuntos
Gangliosídeo G(M1) , Glicosiltransferases , Animais , Escherichia coli/metabolismo , Gangliosídeos , Mamíferos/metabolismo , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo
6.
Int Microbiol ; 26(4): 1157-1166, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37145384

RESUMO

OBJECTIVES: Urinary tract infection (UTI) is one of the most common extraintestinal infections, and uropathogenic Escherichia coli (UPEC) is the main cause of UTIs. However, the ability to treat UTI has been compromised by the increase in antimicrobial resistance, especially carbapenem resistance. Here, we aimed to characterize the antimicrobial resistance and molecular epidemiology of carbapenem-resistant UPEC isolated in Shandong, China. METHODS: In total, 17 carbapenem-resistant UPEC (CR-UPEC) isolates were collected from July 2017 to May 2020 in the Shandong Provincial Hospital. Whole-genome sequencing and bioinformatics analyses were performed to understand the molecular epidemiology of CR-UPEC. Phylogenetic groups, drug resistance genes, biofilm formation, and virulence-related gene profiles of the isolates were analyzed. Plasmid profiling and conjugation assay were performed to evaluate the ability to transfer carbapenem resistance-related genes to other E. coli isolates. Biofilm formation was also evaluated, as it is important for the persistence of infectious diseases. RESULTS: We observed that 15 out of 17 CR-UPEC strains were blaNDM producers, among which 4 isolates could transfer blaNDM to recipient cells. The predominant sequence type was ST167 (6/17), followed by ST410 (3/17). The most prevalent phylogenetic group was phylogenetic group A (10/17), followed by phylogenetic group C (3/17). One isolate was resistant to polymyxin, which was caused by the carriage of a transferable plasmid harboring mcr-1. Statistical analysis did not reveal any significant difference in the carriage rate of fimbriae-coding genes between strong and weak biofilm producers. CONCLUSIONS: Our observations may assist in developing new therapeutic methods for drug-resistant organisms.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Epidemiologia Molecular , Filogenia , Farmacorresistência Bacteriana/genética , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Carbapenêmicos/farmacologia
7.
J Integr Neurosci ; 22(4): 103, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37519161

RESUMO

BACKGROUND: Stroke is a major health concern and a leading cause of mortality and morbidity. We and other groups have documented that hyperbaric oxygen preconditioning could significantly alleviate neuronal damage in ischemia‒reperfusion models through various mechanisms. However, we found that some of the subjects did not benefit from preconditioning with hyperbaric oxygen. The preconditioning phenomenon is similar to vaccination, in which the endogenous survival system is activated to fight against further injuries. However, with vaccine inoculations, we could test for specific antibodies against the pathogens to determine if the vaccination was successful. Likewise, this experiment was carried out to explore a biomarker that can reveal the effectiveness of the preconditioning before neuronal injury occurs. METHODS: Middle cerebral artery occlusion (MCAO) was used to induce focal cerebral ischemia-reperfusion injury. 2D-DIGE-MALDI-TOF-MS/MS proteomic technique was employed to screen the differentially expressed proteins in the serum of rats among the control (Con) group (MCAO model without hyperbaric oxygen (HBO) preconditioning), hyperbaric oxygen protective (HBOP) group (in which the infarct volume decreased after HBO preconditioning vs. Con), and hyperbaric oxygen nonprotective (HBOU) group (in which the infarct volume remained the same or even larger after HBO preconditioning vs. Con). Candidate biomarkers were confirmed by western blot and enzyme linked immunosorbent assay (ELISA), and the relationship between the biomarkers and the prognosis of cerebral injury was further validated. RESULTS: Among the 15 differentially expressed protein spots detected in the HBOP group by Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), 3 spots corresponding to 3 different proteins (haptoglobin, serum albumin, and haemopexin) products were identified by MALDI-TOF-MS/MS. Serum albumin and haemopexin were upregulated, and haptoglobin was downregulated in the HBOP group (p < 0.05 vs. Con and HBOU groups). After the western blot study, only the changes in haemopexin were validated and exhibited similar changes in subjects from the HBOP group in accordance with MALDI-TOF-MS/MS proteomic analysis and enzyme linked immunosorbent assay (ELISA) analysis. The serum level of the hemopexin (HPX) at 2 h after HBO preconditioning was correlated with the infarct volume ratio after MCAO. CONCLUSIONS: Haemopexin may be developed as a predictive biomarker that indicated the effectiveness of a preconditioning strategy against cerebral ischaemic injury.


Assuntos
Lesões Encefálicas , Oxigenoterapia Hiperbárica , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Oxigenoterapia Hiperbárica/métodos , Hemopexina , Haptoglobinas , Proteômica , Espectrometria de Massas em Tandem , Acidente Vascular Cerebral/terapia , Oxigênio , Infarto da Artéria Cerebral Média/terapia , Prognóstico , Biomarcadores , Albumina Sérica , Modelos Animais de Doenças
8.
Chaos ; 33(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37408148

RESUMO

The mechanism of stochastic factors in wind load on iced transmission line galloping has attracted widespread attention. In this paper, the random part of wind load is simulated by Gaussian white noise, and a galloping model of the iced transmission line excited by stochastic wind is established. The path integration method based on the Gauss-Legendre formula and short-time approximation is used to solve the steady-state probability density function of the system and the evolution of the transient probability density. The resonance response of the system is considered when the fluctuating wind acts. Meanwhile, through path integration, the stability of galloping motion is evaluated based on the first passage theory. Comparing with the Monte Carlo simulation, the effectiveness of the proposed method is verified. It turns out that the large external excitation intensity and the small natural frequency are not conducive to the stability of iced transmission line galloping.

9.
J Cell Mol Med ; 26(22): 5713-5727, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36308410

RESUMO

Our previous studies illustrated that 2% H2 inhalation can protect against sepsis-associated encephalopathy (SAE) which is characterized by high mortality and has no effective treatment. To investigate the underlying role of protein phosphorylation in SAE and H2 treatment, a mouse model of sepsis was constructed by caecal ligation and puncture (CLP), then treated with H2 (CLP + H2 ). Brain tissues of the mice were collected to be analysed with tandem mass tag-based quantitative proteomics coupled with IMAC enrichment of phosphopeptides and LC-MS/MS analysis. In proteomics and phosphoproteomics analysis, 268 differentially phosphorylated proteins (DPPs) showed a change in the phosphorylated form in the CLP + H2 group (p < 0.05). Gene ontology analysis revealed that these DPPs were enriched in multiple cellular components, biological processes, and molecular functions. KEGG pathway analysis revealed that they were enriched in glutamatergic synapses, tight junctions, the PI3K-Akt signalling pathway, the HIF-1 signalling pathway, the cGMP-PKG signalling pathway, the Rap1 signalling pathway, and the vascular smooth muscle contraction. The phosphorylated forms of six DPPs, including ribosomal protein S6 (Rps6), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (Ywhag/14-3-3), phosphatase and tensin homologue deleted on chromosome ten (Pten), membrane-associated guanylate kinase 1 (Magi1), mTOR, and protein kinase N2 (Pkn2), were upregulated and participated in the PI3K-Akt signalling pathway. The WB results showed that the phosphorylation levels of Rps6, Ywhag, Pten, Magi1, mTOR, and Pkn2 were increased. The DPPs and phosphorylation-mediated molecular network alterations in H2 -treated CLP mice may elucidate the biological roles of protein phosphorylation in the therapeutic mechanism of H2 treatment against SAE.


Assuntos
Lesões Encefálicas , Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Hidrogênio/uso terapêutico , Fosforilação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Espectrometria de Massas em Tandem , Encefalopatia Associada a Sepse/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Proteína S6 Ribossômica , Serina-Treonina Quinases TOR
10.
Small ; 18(12): e2106477, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092161

RESUMO

Epidermal electronics have been developed with gas/sweat permeability for long-term wearable electrophysiological monitoring. However, the state-of-the-art breathable epidermal electronics ignore the sweat accumulation and immersion at the skin/device interface, resulting in serious degradation of the interfacial conformality and adhesion, leading to signal artifacts with unstable and inaccurate biopotential measurements. Here, the authors present an all-nanofiber-based Janus epidermal electrode endowed with directional sweat transport properties for artifact-free biopotential monitoring. The designed Janus multilayered membrane (≈15 µm) of superhydrophilic-hydrolyzed-polyacrylonitrile (HPAN)/polyurethane (PU)/Ag nanowire (AgNW) can quickly (less than 5 s) drive sweat away from the skin/electrode interface while resisting its penetration in the reverse direction. Along with the medical adhesive (MA)-reinforced junction-nodes, the adhesion strength among the heterogeneous interfaces can be greatly enhanced for robust mechanical-electrical stability. Therefore, their measured on-body electromyography (EMG) and electrocardiography (ECG) signals are free of sweat artifacts with negligible degradation and baseline drift compared to commercial Ag/AgCl gel electrodes and hydrophilic textile electrodes. This work paves a way to design novel directional-sweat-permeable epidermal electronics that can be conformally attached under sweaty conditions for long-term biopotential monitoring and shows the potential to apply epidermal electronics to many challenging conditions.


Assuntos
Nanofibras , Suor , Artefatos , Eletrodos , Permeabilidade
11.
Diabetes Metab Res Rev ; 38(1): e3477, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34041844

RESUMO

AIMS: Glycated albumin (GA) is a biomarker for short-term (2-3 weeks) glycaemic control. However, the predictive utility of GA for diabetes and prediabetes is largely uncharacterised. We aimed to investigate the relationships of baseline serum GA levels with incident diabetes and prediabetes. METHODS: This was a longitudinal cohort study involving 516 subjects without diabetes or prediabetes at baseline. Blood glucose levels were observed during follow-up. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using COX proportional hazard models. Receiver operating characteristic curves and areas under the curves (AUCs) were used to evaluate the discriminating abilities of glycaemic biomarkers and prediction models. RESULTS: During a 9-year follow-up, 51 individuals (9.88%) developed diabetes and 92 (17.83%) prediabetes. Unadjusted HRs (95% CI) for both diabetes and prediabetes increased proportionally with increasing GA levels in a dose-response manner. Multivariable-adjusted HRs (95% CI) for diabetes were significantly elevated from 1.0 (reference) to 5.58 (1.86-16.74). However, the trend was no longer significant for prediabetes after multivariable adjustment. AUCs for GA, fasting blood glucose (FBG) and 2-h postprandial blood glucose (2h-PBG) for predicting diabetes were 0.698, 0.655 and 0.725, respectively. The AUCs for GA had no significant differences compared with those for FBG (p = 0.376) and 2h-PBG (p = 0.552). Replacing FBG or 2h-PBG or both with GA in diabetes prediction models made no significant changes to the AUCs of the models. CONCLUSIONS: GA is of good prognostic utility in predicting diabetes. However, GA may not be a useful biomarker for predicting prediabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Biomarcadores , Glicemia , Estudos de Coortes , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Hemoglobinas Glicadas/análise , Produtos Finais de Glicação Avançada , Humanos , Estudos Longitudinais , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/epidemiologia , Estudos Retrospectivos , Albumina Sérica , Albumina Sérica Glicada
12.
BMC Cancer ; 22(1): 481, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501730

RESUMO

BACKGROUND: Acute promyelocytic leukaemia (APL) is a unique subtype of acute myeloid leukaemia (AML) characterized by haematopoietic failure caused by the accumulation of abnormal promyelocytic cells in bone marrow (BM). However, indispensable BM biopsy frequently afflicts patients in leukaemia surveillance, which increases the burden on patients and reduces compliance. This study aimed to explore whether the novel circulating long noncoding RNA LOC100506453 (lnc-LOC) could be a target in diagnosis, assess the treatment response and supervise the minimal residual disease (MRD) of APL, thereby blazing a trail in noninvasive lncRNA biomarkers of APL. METHODS: Our study comprised 100 patients (40 with APL and 60 with non-APL AML) and 60 healthy donors. BM and peripheral blood (PB) sample collection was accomplished from APL patients at diagnosis and postinduction. Quantitative real-time PCR (qRT-PCR) was conducted to evaluate lnc-LOC expression. A receiver operating characteristic (ROC) analysis was implemented to analyse the value of lnc-LOC in the diagnosis of APL and treatment monitoring. For statistical analysis, the Mann-Whitney U test, a t test, and Spearman's rank correlation test were utilized. RESULTS: Our results showed that BM lnc-LOC expression was significantly different between APL and healthy donors and non-APL AML. lnc-LOC was drastically downregulated in APL patients' BM after undergoing induction therapy. Lnc-LOC was upregulated in APL cell lines and downregulated after all-trans retinoic acid (ATRA)-induced myeloid differentiation, preliminarily verifying that lnc-LOC has the potential to be considered a treatment monitoring biomarker. PB lnc-LOC was positively correlated with BM lnc-LOC in APL patients, non-APL AML patients and healthy donors and decreased sharply after complete remission (CR). However, upregulated lnc-LOC was manifested in relapsed-refractory patients. A positive correlation was revealed between PB lnc-LOC and PML-RARα transcript levels in BM samples. Furthermore, we observed a positive correlation between PB lnc-LOC and BM lnc-LOC expression in APL patients, suggesting that lnc-LOC can be utilized as a noninvasive biomarker for MRD surveillance. CONCLUSIONS: Our study demonstrated that PB lnc-LOC might serve as a novel noninvasive biomarker in the treatment surveillance of APL, and it innovated the investigation and application of newly found lncRNAs in APL noninvasive biomarkers used in diagnosis and detection.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , RNA Longo não Codificante , Biomarcadores , Medula Óssea/patologia , Estudos de Casos e Controles , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Neoplasia Residual/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Tretinoína/farmacologia
13.
BMC Endocr Disord ; 22(1): 53, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241044

RESUMO

PURPOSE: Metabolic syndrome (Mets) is a pathological condition that includes many abnormal metabolic components and requires a simple detection method for rapid use in a large population. The aim of the study was to develop a diagnostic model for Mets in a Chinese population with noninvasive anthropometric and demographic predictors. PATIENTS AND METHODS: Least absolute shrinkage and selection operator (LASSO) regression was used to screen predictors. A large sample from the China National Diabetes and Metabolic Disorders Survey (CNDMDS) was used to develop the model with logistic regression, and internal, internal-external and external validation were conducted to evaluate the model performance. A score calculator was developed to display the final model. RESULTS: We evaluated the discrimination and calibration of the model by receiver operator characteristic (ROC) curves and calibration curve analysis. The area under the ROC curves (AUCs) and the Brier score of the original model were 0.88 and 0.122, respectively. The mean AUCs and the mean Brier score of 10-fold cross validation were 0.879 and 0.122, respectively. The mean AUCs and the mean Brier score of internal-external validation were 0.878 and 0.121, respectively. The AUCs and Brier score of external validation were 0.862 and 0.133, respectively. CONCLUSIONS: The model developed in this study has good discrimination and calibration performance. Its stability was proved by internal validation, external validation and internal-external validation. Then, this model has been displayed by a calculator which can exhibit the specific predictive probability for easy use in Chinese population.


Assuntos
Antropometria/métodos , Síndrome Metabólica/diagnóstico , Glicemia/análise , China/epidemiologia , HDL-Colesterol/sangue , Demografia , Jejum , Feminino , Humanos , Hipertensão/epidemiologia , Masculino , Modelos Estatísticos , Obesidade Abdominal/epidemiologia , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Triglicerídeos/sangue
14.
Metab Eng ; 66: 12-20, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812022

RESUMO

Human milk oligosaccharides (HMOs) are potent bioactive compounds that modulate neonatal health and are of interest for development as potential drug treatments for adult diseases. The potential of these molecules, their limited access from natural sources, and difficulty in large-scale isolation of individual HMOs for studies and applications have motivated the development of chemical syntheses and in vitro enzymatic catalysis strategies. Whole cell biocatalysts are emerging as alternative self-regulating production platforms that have the potential to reduce the cost for enzymatic synthesis of HMOs. Whole cell biocatalysts for the production of short-chained, linear and small monofucosylated HMOs have been reported but those for fucosylated structures with higher complexity have not been explored. In this study, we established a strategy for producing a difucosylated HMO, lactodifucotetraose (LDFT), from lactose and L-fucose in Escherichia coli. We used two bacterial fucosyltransferases with narrow acceptor selectivity to drive the sequential fucosylation of lactose and intermediate 2'-fucosyllactose (2'-FL) to produce LDFT. Deletion of substrate degradation pathways that decoupled cellular growth from LDFT production, enhanced expression of native substrate transporters and modular induction of the genes in the LDFT biosynthetic pathway allowed complete conversion of lactose into LDFT and minor quantities of the side product 3-fucosyllactose (3-FL). Overall, 5.1 g/L of LDFT was produced from 3 g/L lactose and 3 g/L L-fucose in 24 h. Our results demonstrate promising applications of engineered microbial biosystems for the production of multi-fucosylated HMOs for biochemical studies.


Assuntos
Leite Humano , Oligossacarídeos , Fucose , Fucosiltransferases , Humanos
15.
J Org Chem ; 86(13): 8672-8682, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152144

RESUMO

Gangliosides are sialic acid-containing glycosphingolipids that have been found in the cell membranes of all vertebrates. Their important biological functions are contributed by both the glycan and the ceramide lipid components. GM3 is a major ganglioside and a precursor for many other more complex gangliosides. To obtain structurally diverse GM3 gangliosides containing various sialic acid forms and different fatty acyl chains in low cost, an improved process was developed to chemically synthesize lactosyl sphingosine from an inexpensive l-serine derivative. It was then used to obtain GM3 sphingosines from diverse modified sialic acid precursors by an efficient one-pot multienzyme sialylation system containing Pasteurella multocida sialyltransferase 3 (PmST3) with in situ generation of sugar nucleotides. A highly effective chemical acylation and facile C18-cartridge purification process was then used to install fatty acyl chains of varying lengths and different modifications. The chemoenzymatic method represents a powerful total synthetic strategy to access a library of structurally defined GM3 gangliosides to explore their functions.


Assuntos
Gangliosídeo G(M3) , Ácido N-Acetilneuramínico , Animais , Ceramidas , Gangliosídeos , Glicoesfingolipídeos , Esfingosina
16.
Ecotoxicol Environ Saf ; 211: 111881, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444878

RESUMO

BACKGROUND: Cadmium is the most prevalent form of heavy metal contaminant globally and its exposure rises serious health concern. Chronic exposure to cadmium causes immune disturbances. However, few studies have addressed how it affects circulating immune cells, one of the most essential elements for the host defense system, at both population and molecular level. Therefore, this is the first single-cell transcriptomic analysis of the response of the human circulating immune system to plasma cadmium level. METHODS: We conducted a cross-sectional study in Hunan province, which has the highest level of cadmium land contamination in China. A total of 3283 individuals were eligible for analyzing the association between plasma cadmium levels and the monocyte counts and its subgroups. Another 780 individuals were assigned for validation. Thirty propensity-matched individuals without chronic disease from the lowest- and highest-quartile groups according to serum cadmium levels were selected for single-cell RNA sequencing (scRNA-seq) and flow cytometry analyses. Moreover, the monocyte phenotypic alterations in the heavy metal-exposed population were validated with a cecal ligation and puncture sepsis mouse model. RESULTS: From August 2016 to July 2017, we conducted a cross-sectional study to identify phenotypic alterations in peripheral immune cells in cadmium polluted areas in China. Monocyte percentages were negatively associated with plasma cadmium levels in multivariable linear regression analysis. Peripheral blood mononuclear cell scRNA-seq revealed that the CD14+ monocyte subset was dramatically reduced in the highest-quartile cadmium-exposed group. Moreover, we assessed different hallmarks of immune cell dysfunction-such as host defense capability, apoptotic signaling, cellular diversity and malignant gene expression in monocytes. Importantly, cadmium induced phenotypic alterations in the immune system were validated in the cecal ligation and puncture sepsis mouse model, in which chronic exposure to cadmium not only increased the death rate but also decreased monocyte numbers and the ability to clear bacterial infections. CONCLUSION: This transcriptomic analysis provides molecular information about how the most important hallmarks of immune cell dysfunction are affected by plasma cadmium level. The significant phenotypic alterations in monocytes serving as early indicators of increased susceptibility to infectious and malignant diseases.


Assuntos
Cádmio/toxicidade , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/toxicidade , Monócitos/efeitos dos fármacos , China , Estudos Transversais , Citometria de Fluxo , Humanos , Contagem de Leucócitos , Leucócitos Mononucleares , Masculino , Monócitos/citologia , Transcriptoma
17.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684775

RESUMO

Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.


Assuntos
Galectinas/metabolismo , Análise Serial de Proteínas/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Corantes Fluorescentes , Galectinas/química , Produtos Finais de Glicação Avançada , Glicoproteínas , Humanos , Proteínas Imobilizadas , Fenômenos Magnéticos , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Polissacarídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Albumina Sérica , Soroalbumina Bovina , Albumina Sérica Glicada
18.
BMC Cancer ; 20(1): 419, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410590

RESUMO

BACKGROUND: To obtain high-yield histological samples by targeted prostate cancer (PCa) biopsy is the current trend compared with transrectal ultrasound (TRUS)-guided systematic histological biopsy, which is regarded as the gold standard for prostate cancer (PCa) diagnosis. In this paper, we present a targeted PCa imaging strategy using a real-time molecular photoacoustic imaging system integrated with a handheld US probe (PAI/US) and synthesized an integrin αvß3 targeted probe based on ICG (cRGD-ICG). METHODS: To prepare cRGD-ICG, ICG-NHS was linked to cRGD through carboxyl-co-reaction. In vitro PA imaging ability of cRGD-ICG was tested. Orthotopic PCa-bearing rats were used as animal models. After injected with either cRGD-ICG or non-targeted probe, rats were implemented with PA imaging to confirm the specific accumulation of cRGD-ICG at tumor region. Moreover, pathological frozen slices were made to observe distribution of the probe in prostate tissue ex vivo. RESULTS: A small molecular PAI probe was synthesized and exhibited excellent targeted imaging ability in vitro. In vivo photoacoustic imaging was carried out after intravenous injection of cRGD-ICG in orthotopic PCa-bearing rats under the facilitation of the PAI/US system. Maximum molecular photoacoustic signals were observed in the tumor area in vivo after the probe injection, which showed 3.8-fold higher signal enhancement than that in the control group (P < 0.05). Significantly higher cRGD-ICG accumulation was observed under confocal microscopy in the tumor region than in normal prostate tissue. CONCLUSIONS: All our results showed that the comprehensive strategy provided a high-yield and reliable method for PCa diagnosis and targeted prostate biopsy, with great clinical translation potential.


Assuntos
Biópsia Guiada por Imagem/métodos , Imagem Molecular/métodos , Sondas Moleculares/química , Técnicas Fotoacústicas/métodos , Neoplasias da Próstata/patologia , Animais , Apoptose , Proliferação de Células , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Ratos Nus , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Appl Opt ; 59(3): 712-719, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225199

RESUMO

Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24-31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method.


Assuntos
Gráficos por Computador , Mãos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas , Tomografia Computadorizada por Raios X , Acústica , Algoritmos , Sistemas Computacionais , Hemoglobinas/análise , Humanos , Lasers , Imageamento por Ressonância Magnética , Oxiemoglobinas/análise , Pele/patologia , Software , Ultrassom
20.
Small ; 15(17): e1900216, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30919576

RESUMO

Living systems can respond to external stimuli by dynamic interface changes. Moreover, natural wrinkle structures allow the surface to switch dynamically and reversibly from flat to rough in response to specific stimuli. Artificial wrinkle structures have been developed for applications such as optical devices, mechanical sensors, and microfluidic devices. However, chemical molecule-triggered flexible sensors based on dynamic surface wrinkling have not been demonstrated. Inspired by human skin wrinkling, herein, a volatile organic compound (VOC)-responsive flexible sensor with a switchable dual-signal response (transparency and resistance) is achieved based on a multilayered Ag nanowire (AgNW)/SiOx /polydimethylsiloxane (PDMS) film. Wrinkle structures can form dynamically in response to VOC vapors (such as ethanol, toluene, acetone, formaldehyde, and methanol) due to the instability of the multilayer induced by their different swelling capabilities. By controlling the modulus of PDMS and the thickness of the SiOx layer, tunable sensitivities in resistance and transparency of the device are achieved. Additionally, the proximity mechanism of the solubility parameter is proposed, which explains the high selectivity of the device toward ethanol vapor compared with that of other VOCs well. This stimuli-responsive sensor exhibits the dynamic visual feedback and the quantitative electrical signal, which provide a novel approach for developing smart flexible electronics.


Assuntos
Envelhecimento da Pele/efeitos dos fármacos , Pele/patologia , Compostos Orgânicos Voláteis/análise , Dispositivos Eletrônicos Vestíveis , Acetona , Dimetilpolisiloxanos/química , Módulo de Elasticidade , Etanol , Formaldeído , Gases , Humanos , Limite de Detecção , Metanol , Prata/química , Solubilidade , Propriedades de Superfície , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA