Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(4): 739-748, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711248

RESUMO

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.


Assuntos
Alelos , Epilepsia/genética , Deficiência Intelectual/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Sequência de Bases , Linhagem Celular , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação de Sentido Incorreto , Neuritos , Paquistão
2.
Genet Med ; 26(7): 101143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641995

RESUMO

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.


Assuntos
Mutação com Perda de Função , Microcefalia , Hipotonia Muscular , Transtornos do Neurodesenvolvimento , Linhagem , Humanos , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Feminino , Pré-Escolar , Mutação com Perda de Função/genética , Alelos , Criança , Lactente , Sequenciamento do Exoma , Fibroblastos/metabolismo , Fibroblastos/patologia , Autofagia/genética
3.
Clin Genet ; 104(3): 324-333, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317634

RESUMO

Intellectual developmental disorder with paroxysmal dyskinesia or seizures (IDDPADS, OMIM#619150) is an ultra-rare childhood-onset autosomal recessive movement disorder manifesting paroxysmal dyskinesia, global developmental delay, impaired cognition, progressive psychomotor deterioration and/or drug-refractory seizures. We investigated three consanguineous Pakistani families with six affected individuals presenting overlapping phenotypes partially consistent with the reported characteristics of IDDPADS. Whole exome sequencing identified a novel missense variant in Phosphodiesterase 2A (PDE2A): NM_002599.4: c.1514T > C p.(Phe505Ser) that segregated with the disease status of individuals in these families. Retrospectively, we performed haplotype analysis that revealed a 3.16 Mb shared haplotype at 11q13.4 among three families suggesting a founder effect in this region. Moreover, we also observed abnormal mitochondrial morphology in patient fibroblasts compared to controls. Belonging to diverse age groups (13 years-60 years), patients presented paroxysmal dyskinesia, developmental delay, cognitive abnormalities, speech impairment, and drug-refractory seizures with variable onset of disease (as early as 3 months of age to 7 years). Together with the previous reports, we observed that intellectual disability, progressive psychomotor deterioration, and drug-refractory seizures are consistent outcomes of the disease. However, permanent choreodystonia showed variability. We also noticed that the later onset of paroxysmal dyskinesia manifests severe attacks in terms of duration. Being the first report from Pakistan, we add to the clinical and mutation spectrum of PDE2A-related recessive disease raising the total number of patients from six to 12 and variants from five to six. Together, with our findings, the role of PDE2A is strengthened in critical physio-neurological processes.


Assuntos
Coreia , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Coreia/genética , Estudos Retrospectivos , Linhagem , Mutação/genética , Consanguinidade , Convulsões
4.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37711075

RESUMO

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Defeitos Congênitos da Glicosilação , Humanos , Glicosilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Fibroblastos/metabolismo , Defeitos Congênitos da Glicosilação/genética , Fenótipo
5.
Am J Hum Genet ; 104(1): 94-111, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609410

RESUMO

The use of whole-exome and whole-genome sequencing has been a catalyst for a genotype-first approach to diagnostics. Under this paradigm, we have implemented systematic sequencing of neonates and young children with a suspected genetic disorder. Here, we report on two families with recessive mutations in NCAPG2 and overlapping clinical phenotypes that include severe neurodevelopmental defects, failure to thrive, ocular abnormalities, and defects in urogenital and limb morphogenesis. NCAPG2 encodes a member of the condensin II complex, necessary for the condensation of chromosomes prior to cell division. Consistent with a causal role for NCAPG2, we found abnormal chromosome condensation, augmented anaphase chromatin-bridge formation, and micronuclei in daughter cells of proband skin fibroblasts. To test the functional relevance of the discovered variants, we generated an ncapg2 zebrafish model. Morphants displayed clinically relevant phenotypes, such as renal anomalies, microcephaly, and concomitant increases in apoptosis and altered mitotic progression. These could be rescued by wild-type but not mutant human NCAPG2 mRNA and were recapitulated in CRISPR-Cas9 F0 mutants. Finally, we noted that the individual with a complex urogenital defect also harbored a heterozygous NPHP1 deletion, a common contributor to nephronophthisis. To test whether sensitization at the NPHP1 locus might contribute to a more severe renal phenotype, we co-suppressed nphp1 and ncapg2, which resulted in significantly more dysplastic renal tubules in zebrafish larvae. Together, our data suggest that impaired function of NCAPG2 results in a severe condensinopathy, and they highlight the potential utility of examining candidate pathogenic lesions beyond the primary disease locus.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Linhagem , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
6.
Am J Med Genet A ; 188(2): 498-508, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697879

RESUMO

Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1) is an autosomal recessive disorder characterized by progressive weakness of the proximal limb and girdle muscles. Biallelic mutations in CAPN3 are reported frequently to cause LGMDR1. Here, we describe 11 individuals from three unrelated consanguineous families that present with typical features of LGMDR1 that include proximal muscle wasting, weakness of the upper and lower limbs, and elevated serum creatine kinase. Whole-exome sequencing identified a rare homozygous CAPN3 variant near the exon 2 splice donor site that segregates with disease in all three families. mRNA splicing studies showed partial retention of intronic sequence and subsequent introduction of a premature stop codon (NM_000070.3: c.379 + 3A>G; p.Asp128Glyfs*15). Furthermore, we observe reduced CAPN3 expression in primary dermal fibroblasts derived from an affected individual, suggesting instability and/or nonsense-mediated decay of mutation-bearing mRNA. Genome-wide homozygosity mapping and single-nucleotide polymorphism analysis identified a shared haplotype and supports a possible founder effect for the CAPN3 variant. Together, our data extend the mutational spectrum of LGMDR1 and have implications for improved diagnostics for individuals of Pakistani origin.


Assuntos
Calpaína , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Paquistão , RNA Mensageiro/genética
7.
Hum Genet ; 140(12): 1733-1751, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34647195

RESUMO

Mitochondrial disorders are collectively common, genetically heterogeneous disorders in both pediatric and adult populations. They are caused by molecular defects in oxidative phosphorylation, failure of essential bioenergetic supply to mitochondria, and apoptosis. Here, we present three affected individuals from a consanguineous family of Pakistani origin with variable seizures and intellectual disability. Both females display primary ovarian insufficiency (POI), while the male shows abnormal sex hormone levels. We performed whole exome sequencing and identified a recessive missense variant c.694C > T, p.Arg232Cys in TFAM that segregates with disease. TFAM (mitochondrial transcription factor A) is a component of the mitochondrial replisome machinery that maintains mtDNA transcription and replication. In primary dermal fibroblasts, we show depletion of mtDNA and significantly altered mitochondrial function and morphology. Moreover, we observed reduced nucleoid numbers with significant changes in nucleoid size or shape in fibroblasts from an affected individual compared to controls. We also investigated the effect of tfam impairment in zebrafish; homozygous tfam mutants carrying an in-frame c.141_149 deletion recapitulate the mtDNA depletion and ovarian dysgenesis phenotypes observed in affected humans. Together, our genetic and functional data confirm that TFAM plays a pivotal role in gonad development and expands the repertoire of mitochondrial disease phenotypes.


Assuntos
DNA Mitocondrial , Proteínas de Ligação a DNA/genética , Genes Recessivos , Perda Auditiva/genética , Deficiência Intelectual/genética , Proteínas Mitocondriais/genética , Insuficiência Ovariana Primária/genética , Convulsões/genética , Fatores de Transcrição/genética , Animais , Células Cultivadas , Feminino , Gônadas/embriologia , Humanos , Masculino , Linhagem , Peixe-Zebra/genética
9.
PLoS Genet ; 13(7): e1006897, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28686597

RESUMO

Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.


Assuntos
Claudinas/genética , Rim/metabolismo , Isoformas de Proteínas/genética , Insuficiência Renal/genética , Animais , Transporte Biológico/genética , Cátions/metabolismo , Claudinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Hipo-Hidrose , Rim/patologia , Camundongos , Microscopia Eletrônica , Mutação de Sentido Incorreto , Permeabilidade , Isoformas de Proteínas/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Junções Íntimas
10.
Hum Mutat ; 40(7): 899-903, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927481

RESUMO

Biallelic and pathogenic variants in the RTTN gene, encoding the centrosomal protein Rotatin, are associated with variable degrees of neurodevelopmental abnormalities, microcephaly, and extracranial malformations. To date, no reported case has reached their third decade. Herein, we report on a consanguineous family with three adult members, age 43, 57, and 60 years respectively, with primary microcephaly, developmental delay, primordial dwarfism, and brachydactyly segregating a homozygous splice site variant NM_173630.3:c.5648-5T>A in RTTN. The variant RTTN allele results in a nonhypomorphic skipping of exon 42 and a frameshift [(NP_775901.3:p.Ala1883Glyfs*6)]. Brain MRI of one affected individual showed markedly reduced volume of cerebral lobes and enlarged sulci but without signs of neural migration defects. Our assessment of three adult cases with a biallelic RTTN variant shows that a predicted shortened Rotatin, lacking the C-terminal end, are associated with stationary clinical features into the seventh decade. Furthermore, our report adds brachydactyly to the phenotypic spectrum in this pleiotropic entity.


Assuntos
Braquidactilia/genética , Proteínas de Ciclo Celular/genética , Nanismo/genética , Mutação da Fase de Leitura , Microcefalia/genética , Adulto , Alelos , Proteínas de Ciclo Celular/química , Consanguinidade , Éxons , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
11.
Genet Med ; 21(11): 2532-2542, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31036918

RESUMO

PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.


Assuntos
Deficiências do Desenvolvimento/genética , Transtornos do Neurodesenvolvimento/genética , Transativadores/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Biologia Computacional/métodos , Distonia/genética , Família , Feminino , Humanos , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Convulsões/genética , Distúrbios da Fala/genética , Transativadores/metabolismo , Sequenciamento do Exoma
12.
Hum Genomics ; 12(1): 11, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490693

RESUMO

BACKGROUND: Intellectual disability (ID) is a common condition with a population prevalence frequency of 1-3% and an enrichment for males, driven in part by the contribution of mutant alleles on the X-chromosome. Among the more than 500 genes associated with ID, DDX3X represents an outlier in sex specificity. Nearly all reported pathogenic variants of DDX3X are de novo, affect mostly females, and appear to be loss of function variants, consistent with the hypothesis that haploinsufficiency at this locus on the X-chromosome is likely to be lethal in males. RESULTS: We evaluated two male siblings with syndromic features characterized by mild-to-moderate ID and progressive spasticity. Quad-based whole-exome sequencing revealed a maternally inherited missense variant encoding p.R79K in DDX3X in both siblings and no other apparent pathogenic variants. We assessed its possible relevance to their phenotype using an established functional assay for DDX3X activity in zebrafish embryos and found that this allele causes a partial loss of DDX3X function and thus represents a hypomorphic variant. CONCLUSIONS: Our genetic and functional data suggest that partial loss of function of DDX3X can cause syndromic ID. The p.R79K allele affects a region of the protein outside the critical RNA helicase domain, offering a credible explanation for the observed retention of partial function, viability in hemizygous males, and lack of pathology in females. These findings expand the gender spectrum of pathology of this locus and suggest that analysis for DDX3X variants should be considered relevant for both males and females.


Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Alelos , Cromossomos Humanos X/genética , Exoma/genética , Feminino , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Sequenciamento do Exoma , Adulto Jovem
13.
Nephrology (Carlton) ; 22(10): 818-820, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28921755

RESUMO

We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation spectrum of the gene, being the first one from Pakistani population. With a thorough literature review, it also advocates for molecular assessment of ciliopathies to improve risk estimate for future pregnancies, and identify predisposed asymptomatic carriers.


Assuntos
Ciliopatias/genética , Códon sem Sentido , Homozigoto , Doenças Renais Císticas/genética , Cinesinas/genética , Aborto Induzido , Adulto , Ciliopatias/diagnóstico por imagem , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Idade Gestacional , Humanos , Doenças Renais Císticas/diagnóstico por imagem , Fenótipo , Gravidez , Ultrassonografia Pré-Natal
14.
Hum Mol Genet ; 23(22): 5940-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951542

RESUMO

Asymmetric cell division is essential for normal human brain development. Mutations in several genes encoding centrosomal proteins that participate in accurate cell division have been reported to cause autosomal recessive primary microcephaly (MCPH). By homozygosity mapping including three affected individuals from a consanguineous MCPH family from Pakistan, we delineated a critical region of 18.53 Mb on Chromosome 1p21.3-1p13.1. This region contains the gene encoding HsSAS-6, a centrosomal protein primordial for seeding the formation of new centrioles during the cell cycle. Both next-generation and Sanger sequencing revealed a homozygous c.185T>C missense mutation in the HsSAS-6 gene, resulting in a p.Ile62Thr substitution within a highly conserved region of the PISA domain of HsSAS-6. This variant is neither present in any single-nucleotide polymorphism or exome sequencing databases nor in a Pakistani control cohort. Experiments in tissue culture cells revealed that the Ile62Thr mutant of HsSAS-6 is substantially less efficient than the wild-type protein in sustaining centriole formation. Together, our findings demonstrate a dramatic impact of the mutation p.Ile62Thr on HsSAS-6 function and add this component to the list of genes mutated in primary microcephaly.


Assuntos
Povo Asiático/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Mutação de Sentido Incorreto , Adulto , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Masculino , Microcefalia/genética , Microcefalia/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Paquistão , Linhagem , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Alinhamento de Sequência
15.
Hum Mol Genet ; 22(25): 5199-214, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918663

RESUMO

Autosomal recessive primary microcephaly (MCPH) is characterized by reduced head circumference, reduction in the size of the cerebral cortex with otherwise grossly normal brain structure and variable intellectual disability. MCPH is caused by mutations of 11 different genes which code for proteins implicated in cell division and cell cycle regulation. We studied a consanguineous eight-generation family from Pakistan with ten microcephalic children using homozygosity mapping and found a new MCPH locus at HSA 7q21.11-q21.3. Sanger sequencing of the most relevant candidate genes in this region revealed a homozygous single nucleotide substitution c.589G>A in CDK6, which encodes cyclin-dependent kinase 6. The mutation changes a highly conserved alanine at position 197 into threonine (p.Ala197Thr). Post hoc whole-exome sequencing corroborated this mutation's identification as the causal variant. CDK6 is an important protein for the control of the cell cycle and differentiation of various cell types. We show here for the first time that CDK6 associates with the centrosome during mitosis; however, this was not observed in patient fibroblasts. Moreover, the mutant primary fibroblasts exhibited supernumerary centrosomes, disorganized microtubules and mitotic spindles, an increased centrosome nucleus distance, reduced cell proliferation and impaired cell motility and polarity. Upon ectopic expression of the mutant protein and knockdown of CDK6 through shRNA, we noted similar effects. We propose that the identified CDK6 mutation leads to reduced cell proliferation and impairs the correct functioning of the centrosome in microtubule organization and its positioning near the nucleus which are key determinants during neurogenesis.


Assuntos
Centrossomo/metabolismo , Quinase 6 Dependente de Ciclina/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mitose/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 7/genética , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica
16.
Hum Mutat ; 35(5): 565-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24616153

RESUMO

MYO1A is considered the gene underlying autosomal dominant nonsyndromic hearing loss DFNA48, based on six missense variants, one small in-frame insertion, and one nonsense mutation. Results from NGS targeting 66 deafness genes in 109 patients identified three families challenging this assumption: two novel nonsense (p.Tyr740* and p.Arg262*) and a known missense variant were identified heterozygously not only in index patients, but also in unaffected relatives. Deafness in these families clearly resulted from mutations in other genes (MYO7A, EYA1, and CIB2). Most of the altogether 10 MYO1A mutations are annotated in dbSNP, and population frequencies (dbSNP, 1000 Genomes, Exome Sequencing Project) above 0.1% contradict pathogenicity under a dominant model. One healthy individual was even homozygous for p.Arg262*, compatible with homozygous Myo1a knockout mice lacking any overt pathology. MYO1A seems dispensable for hearing and overall nonessential. MYO1A adds to the list of "erroneous disease genes", which will expand with increasing availability of large-scale sequencing data.


Assuntos
Predisposição Genética para Doença , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Bases de Dados Genéticas , Feminino , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
17.
Am J Hum Genet ; 88(6): 852-860, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21665003

RESUMO

Inherited and isolated nail malformations are rare and heterogeneous conditions. We identified two consanguineous pedigrees in which some family members were affected by isolated nail dysplasia that suggested an autosomal-recessive inheritance pattern and was characterized by claw-shaped nails, onychauxis, and onycholysis. Genome-wide SNP array analysis of affected individuals from both families showed an overlapping and homozygous region of 800 kb on the long arm of chromosome 8. The candidate region spans eight genes, and DNA sequence analysis revealed homozygous nonsense and missense mutations in FZD(6), the gene encoding Frizzled 6. FZD(6) belongs to a family of highly conserved membrane-bound WNT receptors involved in developmental processes and differentiation through several signaling pathways. We expressed the FZD(6) missense mutation and observed a quantitative shift in subcellular distribution from the plasma membrane to the lysosomes, where the receptor is inaccessible for signaling and presumably degraded. Analysis of human fibroblasts homozygous for the nonsense mutation showed an aberrant response to both WNT-3A and WNT-5A stimulation; this response was consistent with an effect on both canonical and noncanonical WNT-FZD signaling. A detailed analysis of the Fzd(6)(-/-) mice, previously shown to have an altered hair pattern, showed malformed claws predominantly of the hind limbs. Furthermore, a transient Fdz6 mRNA expression was observed in the epidermis of the digital tips at embryonic day 16.5 during early claw morphogenesis. Thus, our combined results show that FZD6 mutations can result in severe defects in nail and claw formation through reduced or abolished membranous FZD(6) levels and several nonfunctional WNT-FZD pathways.


Assuntos
Cromossomos Humanos Par 8/genética , Receptores Frizzled/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido , Receptores Frizzled/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Membro Posterior/anormalidades , Casco e Garras/anormalidades , Humanos , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Doenças da Unha/congênito , Doenças da Unha/genética , Doenças da Unha/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Proteína Wnt3 , Proteína Wnt3A
18.
BMC Med Genet ; 13: 120, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23234511

RESUMO

BACKGROUND: Anonychia/hyponychia congenita is a rare autosomal recessive developmental disorder characterized by the absence (anonychia) or hypoplasia (hyponuchia) of finger- and/or toenails frequently caused by mutations in the R-spondin 4 (RSPO4) gene. METHODS: Three hypo/anonychia consanguineous Pakistani families were ascertained and genotyped using microsatellite markers spanning the RSPO4 locus on chromosome 20p13. Mutation screening of the RSPO4 gene was carried out by direct sequencing of the entire coding region and all intron-exon boundaries. RESULTS: Mutations in the RSPO4 gene were identified in all families including a novel missense mutation c.178C>T (p.R60W) and two recurrent variants c.353G>A (p.C118Y) and c.3G>A (p.M1I). The c.3G>A variant was identified in unaffected family members and a control sample in a homozygous state. CONCLUSIONS: This study raises to 17 the number of known RSPO4 mutations and further expands the molecular repertoire causing hypo/anonychia. The c.353G>A emerges as a recurrent change with a possible founder effect in the Pakistani population. Our findings suggest that c.3G>A is not sufficient to cause the disorder and could be considered a polymorphism.


Assuntos
Mutação de Sentido Incorreto , Unhas Malformadas/congênito , Trombospondinas/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 20 , Códon de Iniciação , Consanguinidade , Efeito Fundador , Homozigoto , Humanos , Unhas Malformadas/genética , Paquistão , Linhagem
19.
Genes (Basel) ; 13(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36140834

RESUMO

Background and objectives: Autosomal recessive spinocerebellar ataxia-13 (SCAR13) is an ultra-rare disorder characterized by slowly progressive cerebellar ataxia, cognitive deficiencies, and skeletal and oculomotor abnormalities. The objective of this case report is to expand the clinical and molecular spectrum of SCAR13. Methods: We investigated a consanguineous Pakistani family with four patients partially presenting with clinical features of SCAR13 using whole exome sequencing. Segregation analysis was performed by Sanger sequencing in all the available individuals of the family. Results: Patients presented with quadrupedal gait, delayed developmental milestones, non-progressive peripheral neuropathy, and cognitive impairment. Whole exome sequencing identified a novel pathogenic nonsense homozygous variant, Gly240*, in the gene GRM1 as a cause of SCAR13 that segregates with the recessive disease. Discussion: We report a novel homozygous nonsense variant in the GRM1 gene in four Pakistani patients presenting with clinical features that partially overlap with the already reported phenotype of SCAR13. In addition, the family presented quadrupedal gait and non-progressive symptoms, manifestations which have not been recognized previously. So far, only four variants in GRM1 have been reported, in families of Roma, Iranian, and Tunisian origins. The current study adds to the mutation spectrum of GRM1 and provides a rare presentation of SCAR13, the first from the Pakistani population.


Assuntos
Ataxias Espinocerebelares , Humanos , Irã (Geográfico) , Paquistão , Linhagem , Ataxias Espinocerebelares/congênito , Ataxias Espinocerebelares/genética
20.
Genes (Basel) ; 14(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672789

RESUMO

Intellectual disability (ID) is a condition of significant limitation of cognitive functioning and adaptive behavior, with 50% of etiology attributed to genetic predisposition. We recruited two consanguineous Pakistani families manifesting severe ID and developmental delay. The probands were subjected to whole exome sequencing (WES) and variants were further prioritized based on population frequency, predicted pathogenicity and functional relevance. The WES data analysis identified homozygous pathogenic variants in genes MBOAT7 and TRAPPC9. The pathogenicity of the variants was supported by co-segregation analysis and in silico tool. The findings of this study expand mutation spectrum and provide additional evidence to the role of MBOAT7 and TRAPPC9 in causation of ID.


Assuntos
Deficiência Intelectual , Humanos , Consanguinidade , Deficiência Intelectual/genética , Sequenciamento do Exoma , Paquistão , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA