RESUMO
Healable stretchable conductive nanocomposites have received considerable attention. However, there has been a trade-off between the filler-induced electrical conductivity (σ) and polymer-driven mechanical strength. Here significant enhancements in both σ and mechanical strength by designing reversible covalent bonding of the polymer matrix and filler-matrix covalent bifunctionalization are reported. A polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene grafted with maleic anhydride forms the strong reversible covalent bonding with furfuryl alcohol through the Diels-Alder reaction. Small (7.5 nm) and medium (117 nm) nanosatellite particles are generated by in situ etching of silver flakes, enabling electron tunneling-assisted percolation. The filler-polymer covalent bifunctionalization is achieved by 3-mercaptopropanoic acid. Altogether, this results in high σ (108 300 S m-1 ) and tensile strength (16.4 MPa), breaking the trade-off behavior. A nearly perfect (≈100%) healing efficiency is achieved in both σ and tensile strength. The conductive nanocomposite figure of merit (1.78 T Pa S m-1 ), defined by the product of σ and tensile strength, is orders of magnitude greater than the data in literature. The nanocomposite may find applications in healable strain sensors and electronic materials.
RESUMO
Construction signs alert drivers to the dangers of abnormally blocked roads. In the case of autonomous vehicles, construction signs should be detected automatically to prevent accidents. One might think that we can accomplish the goal easily using the popular deep-learning-based detectors, but it is not the case. To train the deep learning detectors to detect construction signs, we need a large amount of training images which contain construction signs. However, collecting training images including construction signs is very difficult in the real world because construction events do not occur frequently. To make matters worse, the construction signs might have dozens of different construction signs (i.e., contents). To address this problem, we propose a new method named content swapping. Our content swapping divides a construction sign into two parts: the board and the frame. Content swapping generates numerous synthetic construction signs by combining the board images (i.e., contents) taken from the in-domain images and the frames (i.e., geometric shapes) taken from the out-domain images. The generated synthetic construction signs are then added to the background road images via the cut-and-paste mechanism, increasing the number of training images. Furthermore, three fine-tuning methods regarding the region, size, and color of the construction signs are developed to make the generated training images look more realistic. To validate our approach, we applied our method to real-world images captured in South Korea. Finally, we achieve an average precision (AP50) score of 84.98%, which surpasses that of the off-the-shelf method by 9.15%. Full experimental results are available online as a supplemental video. The images used in the experiments are also released as a new dataset CSS138 for the benefit of the autonomous driving community.
Assuntos
Condução de Veículo , Redes Neurais de Computação , Veículos Autônomos , Coleta de Dados , República da CoreiaRESUMO
The trade-off between thermal conductivity (κ) and thermal contact resistance (Rc ) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm-2 K-1 ) for isotropic pad-type interface materials is introduced. A highly conductive hard core is constructed by incorporating Ag flakes and silver nanoparticle-decorated multiwalled carbon nanotubes in thermosetting epoxy (EP). The thin soft skin is composed of filler-embedded thermoplastic poly(ethylene-co-vinyl acetate) (PEVA). The κ (82.8 W m-1 K-1 ) of the PEVA-EP-PEVA interface material is only slightly compromised, compared with that (106.5 W m-1 K-1 ) of the EP core (386 µm). However, the elastic modulus (E = 2.10 GPa) at the skin is significantly smaller than the EP (26.28 GPa), enhancing conformality and decreasing Rc from 108.41 to 78.73 mm2 K W-1 . The thermoplastic skin is further softened at an elevated temperature (100 °C), dramatically decreasing E (0.19 GPa) and Rc (0.17 mm2 K W-1 ) with little change in κ, overcoming the trade-off relationship and enhancing the total thermal conductance by 2030%. The successful heat dissipation and applicability to the continuous manufacturing process demonstrate excellent feasibility as future thermal management materials.
Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Temperatura Alta , Prata , Temperatura , Condutividade TérmicaRESUMO
Nanocomposite fibers, composed of conductive nanoparticles and polymer matrix, are crucial for wearable electronics. However, the nanoparticle mixing approach results in aggregation and dispersion problems. A revolutionary synthesis method by premixing silver precursor ions (silver ammonium acetate) with polyvinyl alcohol is reported here. The solvation of ions-prevented aggregation, and uniformly distributed silver nanoparticles (in situ AgNPs, 77 nm) are formed after thermal reduction (155 °C) without using additional reducing or dispersion agents. The conductive fiber is synthesized by the wet spinning technology. After careful optimization, flower-shaped silver nanoparticles (AgNFs, 350-450 nm) are also employed as cofillers. The addition of in situ AgNPs (9.5 vol%) to AgNFs (30 vol%) increases electrical conductivity by 1434% (2090 to 32 064 S cm-1 ) through the efficient construction of percolation networks. The in situ AgNPs provide significantly higher conductivity compared with other secondary nanoparticle fillers. The gaseous byproducts dramatically increase flexibility with a moderate compromise in tensile strength (55 MPa). The particle-free ion-level uniform mixing of silver precursors, followed by in situ reduction, would be a fundamental paradigm shift in nanocomposite synthesis.
RESUMO
Soft thermal interface materials (TIMs) composed of thermally conductive fillers and polymer matrixes have been widely employed for thermal management in electronic and energy devices. However, the thermal conductivity (κ) of TIMs is significantly smaller than the intrinsic κ of fillers due to the large interfacial thermal contact resistance between fillers. Here we achieve a very efficient thermal percolation network of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs) in soft polyurethane (PU) matrix TIMs. A record high κ (42.4 W m-1 K-1) is achieved compared with soft isotropic TIMs in the literature. Ag nanoflake-PU and Ag nanosphere-PU TIMs provide significantly smaller κ (7.9 and 15.0 W m-1 K-1) at an identical filler concentration (38 vol%). Surprisingly, the phonon transport of the Ag NF-PU TIM dramatically increases (κlat = 22.2 W m-1 K-1) compared with Ag nanoflake-PU and Ag nanosphere-PU (κlat = 0.2 and 1.2 W m-1 K-1) TIMs. Kinetic theory reveals that the phonon mean free path (39.6 nm) is significantly increased for the Ag NF-PU TIM by the active coalescence of metallic Ag NFs. The hierarchically structured Ag NFs construct an excellent thermal percolation network in soft isotropic TIMs.
RESUMO
Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)-based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity. Here, the highly conductive and elastic sponge composed of GO, flower-shaped silver nanoparticles (AgNFs), and polyimide (GO-AgNF-PI sponge) are demonstrated. The average pore size and porosity are 114 µm and 94.7%, respectively. Ag NFs have thin petals (8-20 nm) protruding out of the surface of a spherical bud (300-350 nm) significantly enhancing the specific surface area (2.83 m2 g-1 ). The electrical conductivity (0.306 S m-1 at 0% strain) of the GO-AgNF-PI sponge is increased by more than an order of magnitude with the addition of Ag NFs. A nearly perfect elasticity is obtained over a wide compressive strain range (0-90%). The strain-dependent, nonlinear variation of Young's modulus of the sponge provides a unique opportunity as a variable stiffness stress sensor that operates over a wide stress range (0-10 kPa) with a high maximum sensitivity (0.572 kPa-1 ). It allows grasping of a soft rose and a hard bottle, with the minimal object deformation, when attached on the finger of a robot gripper.
RESUMO
Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics.
Assuntos
Amiloide/química , Fenômenos Mecânicos , Nanopartículas/química , Simulação por Computador , Elasticidade , Microscopia de Força AtômicaRESUMO
Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220-620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9-22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530-620 nm) can detect as little as 10-11 M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors for single Ag NF particles were found to be as high as 8.0 × 109, providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle.
RESUMO
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 µm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.
RESUMO
Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm(-1)) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.
RESUMO
Silver nanowires (Ag NWs) have received considerable attention for flexible transparent conductive films (TCFs) since they provide a relatively low sheet resistance at a high transmittance. However, the diffuse light scattering, haze, has been regarded as a hurdle to achieve clarity of films. Here we revisit the Mie scattering theory to calculate the extinction and scattering coefficients of Ag NWs which were employed to estimate haze of TCFs. The theory predicted a decrease in haze with a decrease in Ag NW diameter which was supported by experimental investigations carried out using Ag NWs with 5 different diameters (17.6, 19.9, 22.5, 24.3, and 29.6 nm). Overall, excellent properties of TCFs (haze = 0.21%-1.8%, transmittance = 95.33%-98.45%, sheet resistance = 20.87-81.76 Ω sq-1) were obtained. Ag NWs with a diameter of 17.6 nm provided minimum haze values at equivalent sheet resistances (e.g., haze = 0.21%, transmittance = 98.45%, sheet resistance = 77.36 Ω sq-1) compared with ones with lager diameters and the controls in literatures. This work investigated the interdependence between haze and NW diameter and might provide a design guide for flexible Ag NW TCFs.
RESUMO
Touch sensors are crucial in controlling robotic manipulation when a robot interacts with environmental objects. In this study, multilayer flexible touch sensors in the form of an array were developed. The sensors use ink-type conductive flexible adhesives as electrodes which were printed on polyethylene terephthalate (PET) films in a parallel equidistance stripe pattern. Between the two printed layers, a double-sided adhesive film was used to combine each layer and was perforated at the junctions of the top and bottom electrodes with different-sized circles. These holes represent switching mechanisms between the top and bottom electrodes, and their sizes make the sensor respond to different levels of external pressure. We showed the durability of the fabricated sensor with 1 mm diameter holes by repeated experiments of exerting normal pressure ranging from 0 to 159.15 kPa for 1000 cycles. In case of 1 mm diameter holes, the state of each sensor node was reliably determined by the threshold pressures of 127.3 kPa for increasing pressure and 111.4 kPa for decreasing pressure. On the other hand, decreasing the hole size from 3 to 0.5 mm caused an increase in the threshold pressure from 1.41 to 214 kPa. The relation between the hole size and the threshold pressure was analyzed by a mechanical model. The sensor performance was also verified on curved surfaces up to 60 mm radius of curvatures. Additionally, we fabricated a sensor with three levels of sensitivity with a conventional method which was a thermal evaporation to show the extendibility of the idea.
RESUMO
We investigated electrical conductivity and Vickers hardness of Ag- and Ni-based composites prepared by powder metallurgy involving spark plasma sintering. The starting composition was Ag:Ni = 61:39 vol%, which provided an electrical conductivity of 3.30 × 10(5) S cm(-1) and a hardness of 1.27 GPa. The addition of bare multi-walled carbon nanotubes (MWNTs, 1.45 vol%) increased hardness (1.31 GPa) but decreased electrical conductivity (2.99 × 10(5) S cm(-1)) and carrier mobility (11 cm(2) V(-1) s(-1)) due to the formation of Ni3C in the interface between the MWNTs and Ni during spark plasma sintering. The formation of Ni3C was prevented by coating the surface of the nanotubes with Ag (nAgMWNTs), concomitantly increasing electrical conductivity (3.43 × 10(5) S cm(-1)) and hardness (1.37 GPa) of the sintered specimen (Ag:Ni:nAgMWNTs = 59.55:39:1.45 vol%). The electrical contact switching time (133 357) was also increased by 30%, demonstrating excellent feasibility as electrical contact materials for electric power industries.
RESUMO
Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)--capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water's phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification.
RESUMO
We report knitted fabrics made from highly conductive stretchable fibers. The maximum initial conductivity of fibers synthesized by wet spinning was 17460 S cm(-1) with a rupture tensile strain of 50%. The maximum strain could be increased to 490% by decreasing the conductivity to 236 S cm(-1). The knitted fabric was mechanically and electrically reversible up to 100% tensile strain when coated by poly(dimethylsiloxane). The normalized resistance of the poly(dimethylsiloxane)-coated fabric decreased to 0.65 at 100% strain.
RESUMO
One-dimensional conductive fillers such as single-walled carbon nanotubes (SWNTs) can be aggregated and aligned during transparent conductive film (TCF) formation by the vacuum filtration method. The potential error of analysing the average sheet resistance of these anisotropic films, using the four-point probe in-line method and the conversion formula developed assuming uniform isotropic material properties, was systematically investigated by finite element analysis and experiments. The finite element analysis of anisotropic stripe-patterned TCFs with alternating low (ρ1) and high (ρ2) resistivities revealed that the estimated average sheet resistance approached ρ1/t when the probes were parallel to the aligned nanotubes. The thickness of the film is t. It was more close to ρ2/t when the probes were perpendicular to the aligned tubes. Indeed, TCFs fabricated by the vacuum filtration method using metal-enriched SWNTs exhibited highly anisotropic local regions where tubes were aggregated and aligned. The local sheet resistances of randomly oriented, aligned, and perpendicular tube regions of the TCF at a transmittance of 89.9% were 5000, 2.4, and 12 300 Ω â¡(-1), respectively. Resistivities of the aggregated and aligned tube region (ρ1 = 1.2 × 10(-5) Ω cm) and the region between tubes (ρ2 = 6.2 × 10(-2) Ω cm) could be approximated with the aid of finite element analysis. This work demonstrates the potential error of characterizing the average sheet resistance of anisotropic TCFs using the four-point probe in-line method since surprisingly high or low values could be obtained depending on the measurement angle. On the other hand, a better control of aggregation and alignment of nanotubes would realize TCFs with a very small anisotropic resistivity and a high transparency.
RESUMO
The intrinsic resistance of stretchable materials is dependent on strain, following Ohm's law. Here the invariable resistance of highly conductive cross-linked nanocomposites over 53% strain is reported, where additional electron scattering is absent with stretching. The in situ generated uniformly dispersed small silver nanosatellite particles (diameter = 3.6 nm) realize a short tunneling barrier width of 4.1 nm in cross-linked silicone rubber matrix. Furthermore, the barrier height can be precisely controlled by the gap state energy level modulation in silicone rubber using cross-linkers. The negligible barrier height (0.01 eV) and short barrier width, achieved by the silver nanosatellite particles in cross-linked silicone rubber, dramatically increase the electrical conductivity (51 710 S cm-1) by more than 4 orders of magnitude. The high conductance is also maintained over 53% strain. The quantum tunneling behavior is observed when the barrier height is increased, following the Simmons approximation theory. The transport becomes diffusive, following Ohm's law, when the barrier width is increased beyond 10.3 nm. This study provides a novel strain-invariant resistance mechanism in highly conductive cross-linked nanocomposites.
RESUMO
We investigated the radio-frequency transmission properties of reduced graphene oxide (GO) sheets including contact effects with the metal electrodes. GO sheets were prepared by dielectrophoresis and their structural characteristics were analyzed by x-ray photoelectron spectroscopy and Raman spectroscopy. The contact resistance was much higher than the intrinsic resistance over the entire frequency range, thus the contact resistance was considered as a dominant component of impedance in the radio-frequency regime. In the radio-frequency regime, GO sheets showed a drastic decrease in impedance based on a consistent decrease in the intrinsic and contact resistance. These results support the potential of GO as a radio-frequency interconnector with a solution-based fabrication method.
RESUMO
Phase-change materials (PCMs) have received considerable attention to take advantage of both pad-type and grease-type thermal interface materials (TIMs). However, the critical drawbacks of leaking, non-recyclability, and low thermal conductivity (κ) hinder industrial applications of PCM TIMs. Here, leakage-free healable PCM TIMs with extraordinarily high κ and low total thermal resistance (Rt ) are reported. The matrix material (OP) is synthesized by covalently functionalizing octadecanol PCM with polyethylene-co-methyl acrylate-co-glycidyl methacrylate polymer through the nucleophilic epoxy ring opening reaction. The OP changes from semicrystalline to amorphous above the phase-transition temperature, preventing leaking. The hydrogen-bond-forming functional groups in OP enable nearly perfect healing efficiencies in tensile strength (99.7%), κ (97.0%), and Rt (97.4%). Elaborately designed thermally conductive fillers, silver flakes and multiwalled carbon nanotubes decorated with silver nanoparticles (nAgMWNTs), are additionally introduced in the OP matrix (OP-Ag-nAgMWNT). The nAgMWNTs bridge silver-flake islands, resulting in extraordinarily high κ (43.4 W m-1 K-1 ) and low Rt (30.5 mm2 K W-1 ) compared with PCM TIMs in the literature. Excellent heat dissipation and recycling demonstration of the OP-Ag-nAgMWNT is also carried out using a computer graphic processing unit. The OP-Ag-nAgMWNT is a promising future TIM for thermal management of mechanical and electrical devices.
RESUMO
Thermal rectification is an asymmetric heat transport phenomenon where thermal conductance changes depending on the temperature gradient direction. The experimentally reported efficiency of thermal rectification materials and devices, which are applicable for a wide range of temperatures, is relatively low. Here we report a giant thermal rectification efficiency of 218% by maximizing asymmetry in parameters of the Stefan-Boltzmann law for highly non-linear thermal radiation. The asymmetry in emissivity is realized by sputter-depositing manganese (ε = â¼0.38) on the top right half surface of a polyurethane specimen (ε = â¼0.98). The surface area of the polyurethane side is also dramatically increased (1302%) by 3D printing to realize asymmetry in geometry. There is an excellent agreement between the experimentally measured temperature profiles and finite element simulation results, demonstrating the reliability of the analysis. Machine learning analysis reveals that the surface area is a dominant factor for thermal rectification and suggests novel light-weight designs with high efficiencies. This work may find applications in energy efficient thermal rectification management of electronic devices and housings.