Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 247: 118120, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199476

RESUMO

Photo-catalysts based on BiVO4 (BV) and Eco-graphene (EG) were synthesized and obtained in a single step with high-quality properties. These nanostructures (NEs) were obtained through a green chemistry route and by adding 2, 3, and 5 wt% of a homemade EG. The BV/X EG NEs (where X = corresponds to the weight % of EG) demonstrated high photocatalytic activity, obtaining Sulfamethoxazole degradation percentages of 40, 45, 52, and 57 for BV, BV/2 EG, BV/3 EG, and BV/5 EG respectively, using a blue LED light. In addition, it was observed that the presence of EG slightly affected the surface area and porosity of BV. Moreover, it was observed that the presence of EG stabilized the scheelite monoclinic phase (m-s), and decreased the crystal size and band-gap values of BV-based samples. It was detected that EG contents increased the BV reduction, creating oxygen vacancies and V4+ states, which favored electron transfer, enhanced the photo-catalytic activity, and decreased the recombination rate. The adsorption influence of the BV/EG system was also studied. Finally, the stability tests of these materials after four cycles of reuse allowed keeping practically the full degradation capacity, demonstrating that these NEs represent a promising material driven by visible light that can be used for wastewater decontamination in the presence of drugs.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Sulfametoxazol , Adsorção , Luz
2.
Environ Res ; 228: 115757, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36967002

RESUMO

Fe-doped carbon xerogels with a highly developed graphitic structure were synthesized by a one-step sol-gel polymerization. These highly graphitic Fe-doped carbons are presented as promising dual-functional electro-Fenton catalysts to perform both the electro-reduction of O2 to H2O2 and H2O2 catalytic decomposition (Fenton) for wastewater decontamination. The amount of Fe is key to the development of this electrode material, since affects the textural properties; catalyzes the development of graphitic clusters improving the electrode conductivity; and influences the O2-catalyst interaction controlling the H2O2 selectivity but, at the same time is the catalyst for the decomposition of the electrogenerated H2O2 to OH• radicals for the organic pollutants oxidation. All materials achieve the development of ORR via the 2-electron route. The presence of Fe considerably improves the electro-catalytic activity. However, a mechanism change seems to occur at around -0.5 V in highly Fe-doped samples. At potential lower than -0.5 eV, the present of Feδ+ species or even Fe-O-C active sites favour the selectivity to 2e-pathway, however at higher potentials, Feδ+ species are reduced favoring a O-O strong interaction enhancing the 4e-pathway. The Electro-Fenton degradation of tetracycline was analyzed. The TTC degradation is almost complete (95.13%) after 7 h of reaction without using any external Fenton-catalysts.


Assuntos
Grafite , Poluentes Químicos da Água , Carbono , Águas Residuárias , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise , Tetraciclina , Antibacterianos , Oxirredução
3.
Environ Res ; 217: 114852, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36457238

RESUMO

Metformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using K2S2O8 as oxidant and varying the initial metformin concentration (CA0), oxidant concentration (Cox), temperature (T), and pH in a response surface experimental design. The degradation percentages ranged from 26.1 to 87.3%, while the mineralization percentages varied between 15.1 and 64%. Analysis of variance (ANOVA) showed that the output variables were more significantly affected by CA0, Cox, and T. Besides, a reduction of CA0 and an increase of Cox up to 5000 µM maximizes the metformin degradation since the generation of radicals and their interaction with metformin molecules are favored. For the greatest degradation percentage, the first order apparent rate constant achieved was 0.084 min-1. Furthermore, while in acidic pH, temperature benefits metformin degradation, an opposite behavior is obtained in a basic medium because of recombination and inhibition reactions. Moreover, three degradation pathways were suggested based on the six products detected by HPLC-MS: N-cyanoguanidine m/z = 85; N,N-dimethylurea m/z = 89; N,N-dimethyl-cyanamide m/z = 71 N,N-dimethyl-formamide m/z = 74; glicolonitrilo m/z = 58; and guanidine m/z = 60. Finally, it was shown that in general the toxicity of the degradation byproducts was lower than the toxicity of metformin toward Chlamydomonas reinhardtii.


Assuntos
Metformina , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Oxidantes , Sulfatos/química , Oxirredução , Água , Raios Ultravioleta , Cinética
4.
J Hazard Mater ; 263 Pt 2: 533-40, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239258

RESUMO

The specific adsorption of oxygenated and aliphatic gasoline components onto activated carbons (ACs) was studied under static and dynamic conditions. Ethanol and n-octane were selected as target molecules. A highly porous activated carbon (CA) was prepared by means of two processes: carbonization and chemical activation of olive stone residues. Different types of oxygenated groups, identified and quantified by TPD and XPS, were generated on the CA surface using an oxidation treatment with ammonium peroxydisulfate and then selectively removed by thermal treatments, as confirmed by TPD results. Chemical and porous transformations were carefully analyzed throughout these processes and related to their VOC removal performance. The analysis of the adsorption process under static conditions and the thermal desorption of VOCs enabled us to determine the total adsorption capacity and regeneration possibilities. Breakthrough curves obtained for the adsorption process carried out under dynamic conditions provided information about the mass transfer zone in each adsorption bed. While n-octane adsorption is mainly determined by the porosity of activated carbons, ethanol adsorption is related to their surface chemistry, and in particular is enhanced by the presence of carboxylic acid groups.


Assuntos
Poluentes Atmosféricos/química , Carbono/química , Gasolina/análise , Adsorção , Filtros de Ar , Ácidos Carboxílicos/química , Difusão , Recuperação e Remediação Ambiental , Desenho de Equipamento , Etanol/química , Gases , Temperatura Alta , Hidróxidos/química , Octanos/química , Oxigênio/química , Porosidade , Compostos de Potássio/química , Propriedades de Superfície , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA