Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 377(2154): 20180405, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31378177

RESUMO

We present Keck-NIRSPEC observations of Saturn's [Formula: see text] aurora taken over a period of a month, in support of the Cassini mission's 'Grand Finale'. These observations produce two-dimensional maps of Saturn's [Formula: see text] temperature and ion winds for the first time. These maps show surprising complexity, with different morphologies seen in each night. The [Formula: see text] ion winds reveal multiple arcs of 0.5-1 km s-1 ion flows inside the main auroral emission. Although these arcs of flow occur in different locations each night, they show intricate structures, including mirrored flows on the dawn and dusk of the planet. These flows do not match with the predicted flows from models of either axisymmetric currents driven by the Solar Wind or outer magnetosphere, or the planetary periodic currents associated with Saturn's variable rotation rate. The average of the ion wind flows across all the nights reveals a single narrow and focused approximately 0.3 km s-1 flow on the dawn side and broader and more extensive 1-2 km s-1 sub-corotation, spilt into multiple arcs, on the dusk side. The temperature maps reveal sharp gradients in ionospheric temperatures, varying between 300 and 600 K across the auroral region. These temperature changes are localized, resulting in hot and cold spots across the auroral region. These appear to be somewhat stable over several nights, but change significantly over longer periods. The position of these temperature extremes is not well organized by the planetary period and there is no evidence for a thermospheric driver of the planetary period current system. Since no past magnetospheric or thermospheric models explain the rich complexity observed here, these measurements represent a fantastic new resource, revealing the complexity of the interaction between Saturn's thermosphere, ionosphere and magnetosphere. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.

2.
Nature ; 459(7247): 678-82, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19494910

RESUMO

Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes ( approximately 40 degrees ) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude approximately 40 degrees N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titan's equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected.

3.
Nature ; 456(7219): 214-7, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19005549

RESUMO

The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H(3)(+) infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown.

4.
Nature ; 453(7192): 196-9, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18464736

RESUMO

Observations of oscillations of temperature and wind in planetary atmospheres provide a means of generalizing models for atmospheric dynamics in a diverse set of planets in the Solar System and elsewhere. An equatorial oscillation similar to one in the Earth's atmosphere has been discovered in Jupiter. Here we report the existence of similar oscillations in Saturn's atmosphere, from an analysis of over two decades of spatially resolved observations of its 7.8-microm methane and 12.2-microm ethane stratospheric emissions, where we compare zonal-mean stratospheric brightness temperatures at planetographic latitudes of 3.6 degrees and 15.5 degrees in both the northern and the southern hemispheres. These results support the interpretation of vertical and meridional variability of temperatures in Saturn's stratosphere as a manifestation of a wave phenomenon similar to that on the Earth and in Jupiter. The period of this oscillation is 14.8 +/- 1.2 terrestrial years, roughly half of Saturn's year, suggesting the influence of seasonal forcing, as is the case with the Earth's semi-annual oscillation.

5.
Astrobiology ; 21(10): 1316-1323, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33944604

RESUMO

A lightweight, low-power instrument package to measure, in situ, both (1) the local gaseous environment and (2) the composition and microphysical properties of attendant venusian aerosols is presented. This Aerosol-Sampling Instrument Package (ASIP) would be used to explore cloud chemical and possibly biotic processes on future aerial missions such as multiweek balloon missions and on short-duration (<1 h) probes on Venus and potentially on other cloudy worlds such as Titan, the Ice Giants, and Saturn. A quadrupole ion-trap mass spectrometer (QITMS; Madzunkov and Nikolic, J Am Soc Mass Spectrom 25:1841-1852, 2014) fed alternately by (1) an aerosol separator that injects only aerosols into a vaporizer and mass spectrometer and (2) the pure aerosol-filtered atmosphere, achieves the compositional measurements. Aerosols vaporized <600°C are measured over atomic mass ranges from 2 to 300 AMU at <0.02 AMU resolution, sufficient to measure trace materials, their isotopic ratios, and potential biogenic materials embedded within H2SO4 aerosols, to better than 20% in <300 s for H2SO4 -relative abundances of 2 × 10-9. An integrated lightweight, compact nephelometer/particle-counter determines the number density and particle sizes of the sampled aerosols.


Assuntos
Saturno , Vênus , Aerossóis , Atmosfera/análise , Gases/análise
6.
Astrobiology ; 21(10): 1163-1185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970019

RESUMO

We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.


Assuntos
Meio Ambiente Extraterreno , Vênus , Planeta Terra , Exobiologia , Planetas
7.
Science ; 364(6445)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31196983

RESUMO

Saturn's rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system's dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures.

8.
J Geophys Res Planets ; 121(9): 1814-1826, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29629249

RESUMO

We use observations from the Imaging Science Subsystem on Cassini to create maps of Saturn's Northern Hemisphere (NH) from 2008 to 2015, a time period including a seasonal transition (i.e., Spring Equinox in 2009) and the 2010 giant storm. The processed maps are used to investigate vortices in the NH during the period of 2008-2015. All recorded vortices have diameters (east-west) smaller than 6000 km except for the largest vortex that developed from the 2010 giant storm. The largest vortex decreased its diameter from ~11000 km in 2011 to ~5000 km in 2015, and its average diameter is ~6500 km during the period of 2011-2015. The largest vortex lasts at least 4 years, which is much longer than the lifetimes of most vortices (less than 1 year). The largest vortex drifts to north, which can be explained by the beta drift effect. The number of vortices displays varying behaviors in the meridional direction, in which the 2010 giant storm significantly affects the generation and development of vortices in the middle latitudes (25-45°N). In the higher latitudes (45-90°N), the number of vortices also displays strong temporal variations. The solar flux and the internal heat do not directly contribute to the vortex activities, leaving the temporal variations of vortices in the higher latitudes (45-90°N) unexplained.

9.
Planet Sci ; 3: 3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27512619

RESUMO

Cassini/VIMS high-phase specular observations of Titan's north pole during the T85 flyby show evidence for isolated patches of rough liquid surface within the boundaries of the sea Punga Mare. The roughness shows typical slopes of 6°±1°. These rough areas could be either wet mudflats or a wavy sea. Because of their large areal extent, patchy geographic distribution, and uniform appearance at low phase, we prefer a waves interpretation. Applying theoretical wave calculations based on Titan conditions our slope determination allows us to infer winds of 0.76±0.09 m/s and significant wave heights of [Formula: see text] cm at the time and locations of the observation. If correct, these would represent the first waves seen on Titan's seas, and also the first extraterrestrial sea-surface waves in general.

10.
Sci Rep ; 3: 2410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23934437

RESUMO

Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.


Assuntos
Imagens de Satélites/métodos , Saturno , Estações do Ano , Astronave , Tempo (Meteorologia)
11.
Philos Trans A Math Phys Eng Sci ; 370(1978): 5213-24, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23028167

RESUMO

Since its discovery at Jupiter in 1988, emission from H(3)(+) has been used as a valuable diagnostic tool in our understanding of the upper atmospheres of the giant planets. One of the lasting questions we have about the giant planets is why the measured upper atmosphere temperatures are always consistently hotter than the temperatures expected from solar heating alone. Here, we describe how H(3)(+) forms across each of the planetary disks of Jupiter, Saturn and Uranus, presenting the first observations of equatorial H(3)(+) at Saturn and the first profile of H(3)(+) emission at Uranus not significantly distorted by the effects of the Earth's atmosphere. We also review past observations of variations in temperature measured at Uranus and Jupiter over a wide variety of time scales. To this, we add new observations of temperature changes at Saturn, using observations by Cassini. We conclude that the causes of the significant level of thermal variability observed over all three planets is not only an important question in itself, but that explaining these variations could be the key to answering the more general question of why giant planet upper atmospheres are so hot.

12.
Science ; 332(6036): 1413-7, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21596955

RESUMO

Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41°N.

13.
Science ; 318(5848): 226-9, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932285

RESUMO

Although lightning has been seen on other planets, including Jupiter, polar lightning has been known only on Earth. Optical observations from the New Horizons spacecraft have identified lightning at high latitudes above Jupiter up to 80 degrees N and 74 degrees S. Lightning rates and optical powers were similar at each pole, and the mean optical flux is comparable to that at nonpolar latitudes, which is consistent with the notion that internal heat is the main driver of convection. Both near-infrared and ground-based 5-micrometer thermal imagery reveal that cloud cover has thinned substantially since the 2000 Cassini flyby, particularly in the turbulent wake of the Great Red Spot and in the southern half of the equatorial region, demonstrating that vertical dynamical processes are time-varying on seasonal scales at mid- and low latitudes on Jupiter.

14.
Science ; 310(5745): 92-5, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16210535

RESUMO

Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.


Assuntos
Saturno , Atmosfera , Gelo-Seco , Meio Ambiente Extraterreno , Gelo , Metano , Astronave , Análise Espectral , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA