Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 19(6): e1011167, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37279242

RESUMO

Neural ensembles are found throughout the brain and are believed to underlie diverse cognitive functions including memory and perception. Methods to activate ensembles precisely, reliably, and quickly are needed to further study the ensembles' role in cognitive processes. Previous work has found that ensembles in layer 2/3 of the visual cortex (V1) exhibited pattern completion properties: ensembles containing tens of neurons were activated by stimulation of just two neurons. However, methods that identify pattern completion neurons are underdeveloped. In this study, we optimized the selection of pattern completion neurons in simulated ensembles. We developed a computational model that replicated the connectivity patterns and electrophysiological properties of layer 2/3 of mouse V1. We identified ensembles of excitatory model neurons using K-means clustering. We then stimulated pairs of neurons in identified ensembles while tracking the activity of the entire ensemble. Our analysis of ensemble activity quantified a neuron pair's power to activate an ensemble using a novel metric called pattern completion capability (PCC) based on the mean pre-stimulation voltage across the ensemble. We found that PCC was directly correlated with multiple graph theory parameters, such as degree and closeness centrality. To improve selection of pattern completion neurons in vivo, we computed a novel latency metric that was correlated with PCC and could potentially be estimated from modern physiological recordings. Lastly, we found that stimulation of five neurons could reliably activate ensembles. These findings can help researchers identify pattern completion neurons to stimulate in vivo during behavioral studies to control ensemble activation.


Assuntos
Neurônios , Córtex Visual , Camundongos , Animais , Neurônios/fisiologia , Córtex Visual/fisiologia
3.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242690

RESUMO

Recent advancements in two-photon calcium imaging have enabled scientists to record the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial to understanding the next generation of neuroscience questions, but analyzing these large recordings requires automated methods for neuron segmentation. Supervised methods for neuron segmentation achieve state of-the-art accuracy and speed but currently require large amounts of manually generated ground truth training labels. We reduced the required number of training labels by designing a semi-supervised pipeline. Our pipeline used neural network ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on three publicly available datasets and compared our performance to three widely used segmentation methods. Our method outperformed other methods when trained on a small number of ground truth labels and could achieve state-of-the-art accuracy after training on approximately a quarter of the number of ground truth labels as supervised methods. When trained on many ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods. Overall, our work will help researchers accurately process large neural recordings while minimizing the time and effort needed to generate manual labels.


Assuntos
Neurônios , Neurociências , Cálcio , Redes Neurais de Computação , Fótons , Processamento de Imagem Assistida por Computador
4.
Pers Soc Psychol Bull ; 49(8): 1231-1247, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35658698

RESUMO

Although the vast majority of people with mental illness (PWMI) are not violent, Americans tend to think they are more dangerous than the general population. Because negative media portrayals may contribute to stigma, we used time-series analyses to examine changes in the public's perceived dangerousness of PWMI around six mass shootings whose perpetrators were reported to have a mental illness. From 2011 to 2019, 38,094 U.S. participants completed an online study assessing implicit and explicit perceived dangerousness of PWMI. There were large, upward spikes in perceived dangerousness the week of the Sandy Hook mass shooting that were relatively short-lived. However, there was not a consistent pattern of effects for other events analyzed, and any other spikes observed were smaller. Effects tended to be larger for explicit versus implicit perceived dangerousness. Sandy Hook seemed to temporarily worsen perceived dangerousness of PWMI, but this pattern was not observed for other mass shootings.


Assuntos
Transtornos Mentais , Humanos , Estados Unidos , Transtornos Mentais/epidemiologia , Estigma Social , Agressão , Comportamento Perigoso , Projetos de Pesquisa
5.
bioRxiv ; 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37034579

RESUMO

Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown. Here we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg-laying and locomotion while also biasing the animals towards low-speed dwelling behavior over longer timescales. The acute effects of HSN on egg-laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal projections. The long-lasting effects on dwelling are mediated by HSN release of serotonin that is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal for the first time that neurons can borrow serotonin from one another to control behavior.

6.
Curr Biol ; 33(20): 4430-4445.e6, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37769660

RESUMO

Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Neurônios Motores/fisiologia , Serotonina/fisiologia , Oviposição/fisiologia , Neurônios Serotoninérgicos
7.
Sci Rep ; 12(1): 5940, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396532

RESUMO

Recently developed descanned versions of the oblique light-sheet microscope promise to enable high-frame rate volumetric imaging in a variety of convenient preparations. The efficiency of these microscopes depends on the implementation of the objective coupling that turns the intermediate imaging plane. In this work, we developed a fully immersed coupling strategy between the middle and end objectives of the oblique light-sheet microscope to enable facile alignment and high efficiency coupling. Our design outperformed conventional designs that used only air objectives in resolution and light-collection power. We further demonstrated our design's ability to capture large fields-of-view when paired with a camera with built-in electronic binning. We simultaneously imaged the forebrain and hindbrain of larval zebrafish and found clusters of activity localized to each region of the brain.


Assuntos
Água , Peixe-Zebra , Animais , Encéfalo/diagnóstico por imagem , Larva , Microscopia/métodos
8.
Elife ; 102021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792019

RESUMO

To adapt to their environments, animals must generate behaviors that are closely aligned to a rapidly changing sensory world. However, behavioral states such as foraging or courtship typically persist over long time scales to ensure proper execution. It remains unclear how neural circuits generate persistent behavioral states while maintaining the flexibility to select among alternative states when the sensory context changes. Here, we elucidate the functional architecture of a neural circuit controlling the choice between roaming and dwelling states, which underlie exploration and exploitation during foraging in C. elegans. By imaging ensemble-level neural activity in freely moving animals, we identify stereotyped changes in circuit activity corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we find that mutual inhibition between two antagonistic neuromodulatory systems underlies the persistence and mutual exclusivity of the neural activity patterns observed in each state. Through machine learning analysis and circuit perturbations, we identify a sensory processing neuron that can transmit information about food odors to both the roaming and dwelling circuits and bias the animal towards different states in different sensory contexts, giving rise to context-appropriate state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, sensory-driven control of persistent behavioral states.


Assuntos
Caenorhabditis elegans/fisiologia , Vias Neurais/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Atividade Motora/fisiologia
9.
Front Psychol ; 8: 416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386241

RESUMO

Music discovery in everyday situations has been facilitated in recent years by audio content recognition services such as Shazam. The widespread use of such services has produced a wealth of user data, specifying where and when a global audience takes action to learn more about music playing around them. Here, we analyze a large collection of Shazam queries of popular songs to study the relationship between the timing of queries and corresponding musical content. Our results reveal that the distribution of queries varies over the course of a song, and that salient musical events drive an increase in queries during a song. Furthermore, we find that the distribution of queries at the time of a song's release differs from the distribution following a song's peak and subsequent decline in popularity, possibly reflecting an evolution of user intent over the "life cycle" of a song. Finally, we derive insights into the data size needed to achieve consistent query distributions for individual songs. The combined findings of this study suggest that music discovery behavior, and other facets of the human experience of music, can be studied quantitatively using large-scale industrial data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA