Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Breed ; 42(4): 18, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309459

RESUMO

Using imbalanced historical yield data to predict performance and select new lines is an arduous breeding task. Genome-wide association studies (GWAS) and high throughput genotyping based on sequencing techniques can increase prediction accuracy. An association mapping panel of 227 Texas elite (TXE) wheat breeding lines was used for GWAS and a training population to develop prediction models for grain yield selection. An imbalanced set of yield data collected from 102 environments (year-by-location) over 10 years, through testing yield in 40-66 lines each year at 6-14 locations with 38-41 lines repeated in the test in any two consecutive years, was used. Based on correlations among data from different environments within two adjacent years and heritability estimated in each environment, yield data from 87 environments were selected and assigned to two correlation-based groups. The yield best linear unbiased estimation (BLUE) from each group, along with reaction to greenbug and Hessian fly in each line, was used for GWAS to reveal genomic regions associated with yield and insect resistance. A total of 74 genomic regions were associated with grain yield and two of them were commonly detected in both correlation-based groups. Greenbug resistance in TXE lines was mainly controlled by Gb3 on chromosome 7DL in addition to two novel regions on 3DL and 6DS, and Hessian fly resistance was conferred by the region on 1AS. Genomic prediction models developed in two correlation-based groups were validated using a set of 105 new advanced breeding lines and the model from correlation-based group G2 was more reliable for prediction. This research not only identified genomic regions associated with yield and insect resistance but also established the method of using historical imbalanced breeding data to develop a genomic prediction model for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01287-8.

2.
PeerJ ; 9: e12350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900409

RESUMO

Quantitative trait loci (QTL) analysis could help to identify suitable molecular markers for marker-assisted breeding (MAB). A mapping population of 124 F5:7recombinant inbred lines derived from the cross 'TAM 112'/'TAM 111' was grown under 28 diverse environments and evaluated for grain yield, test weight, heading date, and plant height. The objective of this study was to detect QTL conferring grain yield and agronomic traits from multiple mega-environments. Through a linkage map with 5,948 single nucleotide polymorphisms (SNPs), 51 QTL were consistently identified in two or more environments or analyses. Ten QTL linked to two or more traits were also identified on chromosomes 1A, 1D, 4B, 4D, 6A, 7B, and 7D. Those QTL explained up to 13.3% of additive phenotypic variations with the additive logarithm of odds (LOD(A)) scores up to 11.2. The additive effect increased yield up to 8.16 and 6.57 g m-2 and increased test weight by 2.14 and 3.47 kg m-3 with favorable alleles from TAM 111 and TAM 112, respectively. Seven major QTL for yield and six for TW with one in common were of our interest on MAB as they explained 5% or more phenotypic variations through additive effects. This study confirmed previously identified loci and identified new QTL and the favorable alleles for improving grain yield and agronomic traits.

3.
Front Neurosci ; 11: 465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919848

RESUMO

This study tested hypothesized relationships between noise exposure and auditory deficits. Both retrospective assessment of potential associations between noise exposure history and performance on an audiologic test battery and prospective assessment of potential changes in performance after new recreational noise exposure were completed. Methods: 32 participants (13M, 19F) with normal hearing (25-dB HL or better, 0.25-8 kHz) were asked to participate in 3 pre- and post-exposure sessions including: otoscopy, tympanometry, distortion product otoacoustic emissions (DPOAEs) (f2 frequencies 1-8 kHz), pure-tone audiometry (0.25-8 kHz), Words-in-Noise (WIN) test, and electrocochleography (eCochG) measurements at 70, 80, and 90-dB nHL (click and 2-4 kHz tone-bursts). The first session was used to collect baseline data, the second session was collected the day after a loud recreational event, and the third session was collected 1-week later. Of the 32 participants, 26 completed all 3 sessions. Results: The retrospective analysis did not reveal statistically significant relationships between noise exposure history and any auditory deficits. The day after new exposure, there was a statistically significant correlation between noise "dose" and WIN performance overall, and within the 4-dB signal-to-babble ratio. In contrast, there were no statistically significant correlations between noise dose and changes in threshold, DPOAE amplitude, or AP amplitude the day after new noise exposure. Additional analyses revealed a statistically significant relationship between TTS and DPOAE amplitude at 6 kHz, with temporarily decreased DPOAE amplitude observed with increasing TTS. Conclusions: There was no evidence of auditory deficits as a function of previous noise exposure history, and no permanent changes in audiometric, electrophysiologic, or functional measures after new recreational noise exposure. There were very few participants with TTS the day after exposure - a test time selected to be consistent with previous animal studies. The largest observed TTS was approximately 20-dB. The observed pattern of small TTS suggests little risk of synaptopathy from common recreational noise exposure, and that we should not expect to observe changes in evoked potentials for this reason. No such changes were observed in this study. These data do not support suggestions that common, recreational noise exposure is likely to result in "hidden hearing loss".

4.
Lang Speech Hear Serv Sch ; 46(2): 127-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25654624

RESUMO

PURPOSE: Antiadhesive properties in xylitol, a natural sugar alcohol, can help prevent acute otitis media (AOM) in children by inhibiting harmful bacteria from colonizing and adhering to oral and nasopharyngeal areas and traveling to the Eustachian tube and middle ear. This study investigated parents' willingness to use and comply with a regimen of xylitol for preventing AOM in their preschool- and kindergarten-aged children. METHOD: An Internet questionnaire was designed and administered to parents of young children in preschool and kindergarten settings. RESULTS: Most parents were unaware of xylitol's use for AOM and would not likely comply with regimens for preventing AOM in their children; however, parents having previous knowledge of xylitol and whose children had a history of AOM would be more likely to do so. CONCLUSIONS: Generally, most of these parents did not know about xylitol and probably would not use it to prevent ear infections. Unfortunately, these results parallel earlier findings for teachers and schools, which present obstacles for establishing ear infection prevention programs using similar protocols for young children. The results showed that considerable education and age-appropriate vehicles for administering xylitol are needed before establishing AOM prevention programs in schools and/or at home.


Assuntos
Antibacterianos/uso terapêutico , Atitude Frente a Saúde , Goma de Mascar , Otite Média/prevenção & controle , Pais/psicologia , Xilitol/uso terapêutico , Doença Aguda , Criança , Pré-Escolar , Feminino , Pesquisas sobre Atenção à Saúde , Humanos , Masculino , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA