Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(4): 1447-1458, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092454

RESUMO

Lactate has various uses as industrial platform chemical, poly-lactic acid precursor or feedstock for anaerobic co-cultivations. The aim of this study was to construct and characterise Acetobacterium woodii strains capable of autotrophic lactate production. Therefore, the lctBCD genes, encoding the native Lct dehydrogenase complex, responsible for lactate consumption, were knocked out. Subsequently, a gene encoding a D-lactate dehydrogenase (LDHD) originating from Leuconostoc mesenteroides was expressed in A. woodii, either under the control of the anhydrotetracycline-inducible promoter Ptet or under the lactose-inducible promoter PbgaL. Moreover, LDHD was N-terminally fused to the oxygen-independent fluorescence-activating and absorption-shifting tag (FAST) and expressed in respective A. woodii strains. Cells that produced the LDHD fusion protein were capable of lactate production of up to 18.8 mM in autotrophic batch experiments using H2 + CO2 as energy and carbon source. Furthermore, cells showed a clear and bright fluorescence during exponential growth, as well as in the stationary phase after induction, mediated by the N-terminal FAST. Flow cytometry at the single-cell level revealed phenotypic heterogeneities for cells expressing the FAST-tagged LDHD fusion protein. This study shows that FAST provides a new reporter tool to quickly analyze gene expression over the course of growth experiments of A. woodii. Consequently, fluorescence-based reporters allow for faster and more targeted optimization of production strains.Key points •Autotrophic lactate production was achieved with A. woodii. •FAST functions as fluorescent marker protein in A. woodii. •Fluorescence measurements on single-cell level revealed population heterogeneity.


Assuntos
Dióxido de Carbono , Ácido Láctico , Acetatos/metabolismo , Acetobacterium , Dióxido de Carbono/metabolismo , Fluorescência
2.
Front Bioeng Biotechnol ; 11: 1213236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425362

RESUMO

Acetogenic bacteria can play a major role in achieving Net Zero through their ability to convert CO2 into industrially relevant chemicals and fuels. Full exploitation of this potential will be reliant on effective metabolic engineering tools, such as those based on the Streptococcus pyogenes CRISPR/Cas9 system. However, attempts to introduce cas9-containing vectors into Acetobacterium woodii were unsuccessful, most likely as a consequence of Cas9 nuclease toxicity and the presence of a recognition site for an endogenous A. woodii restriction-modification (R-M) system in the cas9 gene. As an alternative, this study aims to facilitate the exploitation of CRISPR/Cas endogenous systems as genome engineering tools. Accordingly, a Python script was developed to automate the prediction of protospacer adjacent motif (PAM) sequences and used to identify PAM candidates of the A. woodii Type I-B CRISPR/Cas system. The identified PAMs and the native leader sequence were characterized in vivo by interference assay and RT-qPCR, respectively. Expression of synthetic CRISPR arrays, consisting of the native leader sequence, direct repeats, and adequate spacer, along with an editing template for homologous recombination, successfully led to the creation of 300 bp and 354 bp in-frame deletions of pyrE and pheA, respectively. To further validate the method, a 3.2 kb deletion of hsdR1 was also generated, as well as the knock-in of the fluorescence-activating and absorption-shifting tag (FAST) reporter gene at the pheA locus. Homology arm length, cell density, and the amount of DNA used for transformation were found to significantly impact editing efficiencies. The devised workflow was subsequently applied to the Type I-B CRISPR/Cas system of Clostridium autoethanogenum, enabling the generation of a 561 bp in-frame deletion of pyrE with 100% editing efficiency. This is the first report of genome engineering of both A. woodii and C. autoethanogenum using their endogenous CRISPR/Cas systems.

3.
Front Bioeng Biotechnol ; 11: 1218099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397966

RESUMO

The use of environmentally damaging petrochemical feedstocks can be displaced by fermentation processes based on engineered microbial chassis that recycle biomass-derived carbon into chemicals and fuels. The stable retention of introduced genes, designed to extend product range and/or increase productivity, is essential. Accordingly, we have created multiply marked auxotrophic strains of Clostridium acetobutylicum that provide distinct loci (pyrE, argH, purD, pheA) at which heterologous genes can be rapidly integrated using allele-coupled exchange (ACE). For each locus, ACE-mediated insertion is conveniently selected on the basis of the restoration of prototrophy on minimal media. The Clostridioides difficile gene (tcdR) encoding an orthogonal sigma factor (TcdR) was integrated at the pyrE locus under the control of the lactose-inducible, bgaR::PbgaL promoter to allow the simultaneous control of genes/operons inserted at other disparate loci (purD and pheA) that had been placed under the control of the PtcdB promoter. In control experiments, dose-dependent expression of a catP reporter gene was observed with increasing lactose concentration. At the highest doses tested (10 mM) the level of expression was over 10-fold higher than if catP was placed directly under the control of bgaR::PbgaL and over 2-fold greater than achieved using the strong Pfdx promoter of the Clostridium sporogenes ferredoxin gene. The utility of the system was demonstrated in the production of isopropanol by the C. acetobutylicum strain carrying an integrated copy of tcdR following the insertion of a synthetic acetone operon (ctfA/B, adc) at the purD locus and a gene (sadh) encoding a secondary dehydrogenase at pheA. Lactose induction (10 mM) resulted in the production of 4.4 g/L isopropanol and 19.8 g/L Isopropanol-Butanol-Ethanol mixture.

4.
J Biotechnol ; 353: 9-18, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35659892

RESUMO

Acetogenic bacteria produce acetate following the fixation of CO2 via the Wood-Ljungdahl pathway. As such, they represent excellent process organisms for the production of novel chemicals and fuels from this waste greenhouse gas. Acetobacterium woodii is the model acetogen and numerous studies have been conducted investigating its biochemistry, gas consumption and use as a production chassis. However, there are a dearth of available tools for A. woodii gene modification which limits the research options available for genetic studies. Here, the previously proposed Clostridia Roadmap is implemented in A. woodii leading to the derivation of a knockout system for the generation of clean, in-frame deletions. The replicon of the Gram-positive plasmid pCD6 that originated in Clostridioides difficile was identified as being replication-defective in A. woodii, a property that was exploited to construct a pseudo-suicide knockout plasmid which was used to generate an auxotrophic, pyrE mutant. This allowed the subsequent use of a heterologous pyrE gene (from Clostridium acetobutylicum) as a counter selection marker and the deletion of a number of genes by allelic exchange. Specific mutants generated were affected in growth on glucose, fructose and ethanol as a consequence of deletion of fruA, pstG and adhE, respectively.


Assuntos
Acetobacterium , Clostridium acetobutylicum , Acetatos/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Dióxido de Carbono/metabolismo , Clostridium acetobutylicum/metabolismo , Deleção de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA