Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Vet Med Educ ; 50(2): 205-216, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35385371

RESUMO

Rotations in diverse, marginalized communities may offer health care students opportunities to develop cultural humility through different clinical experiences and activities. Through the actualization of cultural humility, veterinarians may offer accessible, affordable, culturally proficient, high-quality care to all their patients with a better understanding of how cultural differences affect the animal patient's health, well-being, and care. The purpose of this study was to explore whether participation in a community rotation in remote northern Indigenous communities promotes cultural humility among final-year veterinary students. Small groups of University of Calgary veterinary students travel annually to the Sahtu Settlement Area of the Northwest Territories, Canada, to participate in the Northern Community Health Rotation (NCHR). During the 4-week rotation, students spend 2.5 weeks providing veterinary services to domestic animals in five communities in the Sahtu. Eleven veterinary students who attended the NCHR between 2015 and 2020 answered exploratory open-ended questions in an online survey. Responses highlight areas of learning that contributed to their development of cultural humility. The rotation appears successful in increasing students' confidence working with people from diverse cultures, offering students opportunities to implement a client-centered approach, and advancing their capacity to recognize and challenge their preconceived biases about Indigenous cultures and animal ownership. These experiences are important to the acquisition of cultural humility for veterinary care providers.


Assuntos
Educação em Veterinária , Saúde Pública , Animais , Humanos , Saúde Pública/educação , Competência Cultural/educação , Estudantes , Aprendizagem
2.
Angew Chem Int Ed Engl ; 59(32): 13586-13590, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32392392

RESUMO

Homoleptic σ-bonded uranium-alkyl complexes have been a synthetic target since the Manhattan Project. The current study describes the synthesis and characterization of several unprecedented uranium-methyl complexes. Amongst these complexes, the first example of a homoleptic uranium-alkyl dimer, [Li(THF)4 ]2 [U2 (CH3 )10 ], as well as a seven-coordinate uranium-methyl monomer, {Li(OEt2 )Li(OEt2 )2 UMe7 Li}n were both crystallographically identified. The diversity of complexes reported herein provides critical insight into the structural diversity, electronic structure and bonding in uranium-alkyl chemistry.

3.
J Am Chem Soc ; 141(31): 12338-12345, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31304750

RESUMO

While iron-catalyzed C-H activation offers an attractive reaction methodology for organic transformations, the lack of molecular-level insight into the in situ formed and reactive iron species impedes continued reaction development. Herein, freeze-trapped 57Fe Mössbauer spectroscopy and single-crystal X-ray crystallography combined with reactivity studies are employed to define the key cyclometalated iron species active in triazole-assisted iron-catalyzed C-H activation. These studies provide the first direct experimental definition of an activated intermediate, which has been identified as the low-spin iron(II) complex [(sub-A)(dppbz)(THF)Fe]2(µ-MgX2), where sub-A is a deprotonated benzamide substrate. Reaction of this activated intermediate with additional diarylzinc leads to the formation of a cyclometalated iron(II)-aryl species, which upon reaction with oxidant, generates C-H arylated product at a catalytically relevant rate. Furthermore, pseudo-single-turnover reactions between catalytically relevant iron intermediates and excess nucleophile identify transmetalation as rate-determining, whereas C-H activation is shown to be facile under the reaction conditions.

4.
Inorg Chem ; 57(15): 9544-9553, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30040391

RESUMO

Treatment of both [CoCl( tBuPNP)] and [NiCl( tBuPNP)] ( tBuPNP = anion of 2,5-bis((di- tert-butylphosphino)methyl)pyrrole) with one equivalent of benzoquinone affords the corresponding chloride complexes containing a dehydrogenated PNP ligand, tBudPNP ( tBudPNP = anion of 2,5-bis((di- tert-butylphosphino)methylene)-2,5-dihydropyrrole). Dehydrogenation of PNP to dPNP results in minimal change to steric profile of the ligand but has important consequences for the resulting redox potentials of the metal complexes, resulting in the ability to isolate both [CoH( tBudPNP)] and [CoEt( tBudPNP)], which are more challenging (hydride) or not possible (ethyl) to prepare with the parent PNP ligand. Electrochemical measurements with both the Co and Ni dPNP species demonstrate a substantial shift in redox potentials for both the M(II/III) and M(II/I) couples. In the case of the former, oxidation to trivalent Co was found to be reversible, and subsequent reaction with AgSbF6 afforded a rare example of a square-planar Co(III) species. Corresponding reduction of [CoCl( tBudPNP)] with KC8 produced the diamagnetic Co(I) species, [Co(N2)( tBudPNP)]. Further reduction of the Co(I) complex was found to generate a pincer-based π-radical anion that demonstrated well-resolved EPR features to the four hydrogen atoms and lone nitrogen atom of the ligand with minor contributions from cobalt and coordinated N2. Changes in the electronic character of the PNP ligand upon dehydrogenation are proposed to result from loss of aromaticity in the pyrrole ligand, resulting in a more reducing central amido donor. DFT calculations on the Co(II) complexes were performed to shed further insight into the electronic structure of the pincer complexes.

5.
Angew Chem Int Ed Engl ; 57(22): 6496-6500, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29624838

RESUMO

The use of N-methylpyrrolidone (NMP) as a co-solvent in ferric salt catalyzed cross-coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross-coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6 ][FeMe3 ]2 (1), which forms as the major iron species in situ in reactions of Fe(acac)3 and MeMgBr under catalytically relevant conditions where NMP is employed as a co-solvent. Importantly, combined GC analysis and 57 Fe Mössbauer spectroscopic studies identified 1 as a highly reactive iron species for the selective formation generating cross-coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of 1 over [Fe8 Me12 ]- cluster generation, which occurs in the absence of NMP.


Assuntos
Brometos/química , Compostos Férricos/síntese química , Ferro/química , Compostos de Magnésio/química , Compostos Organometálicos/síntese química , Pirrolidinonas/química , Catálise , Compostos Férricos/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Sais/síntese química , Sais/química
6.
Chem Sci ; 12(27): 9398-9407, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349913

RESUMO

Synthetic methods that utilise iron to facilitate C-H bond activation to yield new C-C and C-heteroatom bonds continue to attract significant interest. However, the development of these systems is still hampered by a limited molecular-level understanding of the key iron intermediates and reaction pathways that enable selective product formation. While recent studies have established the mechanism for iron-catalysed C-H arylation from aryl-nucleophiles, the underlying mechanistic pathway of iron-catalysed C-H activation/functionalisation systems which utilise electrophiles to establish C-C and C-heteroatom bonds has not been determined. The present study focuses on an iron-catalysed C-H allylation system, which utilises allyl chlorides as electrophiles to establish a C-allyl bond. Freeze-trapped inorganic spectroscopic methods (57Fe Mössbauer, EPR, and MCD) are combined with correlated reaction studies and kinetic analyses to reveal a unique and rapid reaction pathway by which the allyl electrophile reacts with a C-H activated iron intermediate. Supporting computational analysis defines this novel reaction coordinate as an inner-sphere radical process which features a partial iron-bisphosphine dissociation. Highlighting the role of the bisphosphine in this reaction pathway, a complementary study performed on the reaction of allyl electrophile with an analogous C-H activated intermediate bearing a more rigid bisphosphine ligand exhibits stifled yield and selectivity towards allylated product. An additional spectroscopic analysis of an iron-catalysed C-H amination system, which incorporates N-chloromorpholine as the C-N bond-forming electrophile, reveals a rapid reaction of electrophile with an analogous C-H activated iron intermediate consistent with the inner-sphere radical process defined for the C-H allylation system, demonstrating the prevalence of this novel reaction coordinate in this sub-class of iron-catalysed C-H functionalisation systems. Overall, these results provide a critical mechanistic foundation for the rational design and development of improved systems that are efficient, selective, and useful across a broad range of C-H functionalisations.

7.
Chem Sci ; 9(41): 7931-7939, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30429998

RESUMO

The first direct syntheses, structural characterizations, and reactivity studies of iron-phenyl species formed upon reaction of Fe(acac)3 and PhMgBr in THF are presented. Reaction of Fe(acac)3 with 4 equiv. PhMgBr in THF leads to the formation of [FePh2(µ-Ph)]2 2- at -80 °C, which can be stabilized through the addition of N-methylpyrrolidone. Alternatively, at -30 °C this reaction leads to the formation of the tetranuclear iron-phenyl cluster, Fe4(µ-Ph)6(THF)4. Further synthetic studies demonstrate that analogous tetranuclear iron clusters can be formed with both 4-F-PhMgBr and p-tolylMgBr, illustrating the generality of this structural motif for reactions of simple ferric salts and aryl Grignard reagents in THF. Additional studies isolate and define key iron species involved in the synthetic pathway leading to the formation of the tetranuclear iron-aryl species. While reaction studies demonstrate that [FePh2(µ-Ph)]2 2- is unreactive towards electrophile, Fe4(µ-Ph)6(THF)4 is found to rapidly react with bromocyclohexane to selectively form phenylcyclohexane. Based on this reactivity, a new catalytic reaction protocol has been developed that enables efficient cross-couplings using Fe4(µ-Ph)6(THF)4, circumventing the current need for additives such as TMEDA or supporting ligands to achieve effective cross-coupling of PhMgBr and a secondary alkyl halide.

8.
Chem Sci ; 8(2): 1369-1377, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451278

RESUMO

Calprotectin (CP) is an abundant metal-chelating protein involved in host defense, and the ability of human CP to bind Fe(ii) in a calcium-dependent manner was recently discovered. In the present study, near-infrared magnetic circular dichroism spectroscopy is employed to investigate the nature of Fe(ii) coordination at the two transition-metal-binding sites of CP that are a His3Asp motif (site 1) and a His6 motif (site 2). Upon the addition of sub-stoichiometric Fe(ii), a six-coordinate (6C) Fe(ii) center associated with site 2 is preferentially formed in the presence of excess Ca(ii). This site exhibits an exceptionally large ligand field (10Dq = 11 045 cm-1) for a non-heme Fe(ii) protein. Analysis of CP variants lacking residues of the His6 motif supports that CP coordinates Fe(ii) at site 2 by employing six His ligands. In the presence of greater than one equiv. of Fe(ii) or upon mutation of the His6 motif, the metal ion also binds at site 1 of CP to form a five-coordinate (5C) Fe(ii)-His3Asp motif that was previously unidentified in this system. Notably, the introduction of His-to-Ala mutations at the His6 motif results in a mixture of 6C (site 2) and 5C (site 1) signals in the presence of sub-stoichiometric Fe(ii). These results are consistent with a reduced Fe(ii)-binding affinity of site 2 as more weakly coordinating water-derived ligands complete the 6C site. In the absence of Ca(ii), both sites 1 and 2 are occupied upon addition of sub-stoichiometric Fe(ii), and a stronger ligand field is observed for the 5C site. These spectroscopic studies provide further evaluation of a unique non-heme Fe(ii)-His6 site for metalloproteins and support the notion that Ca(ii) ions influence the Fe(ii)-binding properties of CP.

9.
Dalton Trans ; 46(39): 13290-13299, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28766619

RESUMO

The combination of simple cobalt salts and N-heterocyclic carbene (NHC) ligands has been highly effective in C-H functionalization, hydroarylation and cross-coupling catalysis, though displaying a strong dependence on the identity of the NHC ligand. In addition, reactions effective with NHC ligands are often ineffective with phosphine ligands, further motivating the evaluation of the fundamental electronic structure and bonding differences in well-defined distorted tetrahedral Co(ii) complexes. Magnetic circular dichroism (MCD) studies indicate that Co(ii)-bisphosphines have larger ligand fields than Co(ii)-NHC complexes. Theoretical density functional theory (DFT) calculations were performed on an expanded set of L2CoCl2 complexes (L2 = NHC, bisphosphine and diamine) to study the electronic structure and relative ligation properties of NHCs compared to bisphosphine and diamine ligands. Mayer bond order and charge decomposition analyses indicate that NHC ligands are slightly stronger donor ligands than bisphosphines but also result in a weakening of Co-Cl bonds in a trans-like influence. From MCD and DFT studies, changing the NHC N-substituent has a larger effect on the ligand field of Co(ii)-NHC complexes than saturating the backbone. Overall, these studies provide detailed insight into the electronic structure and bonding effects in Co(ii) complexes with ligand types commonly explored in catalysis.

10.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 12): m228-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26870438

RESUMO

In the structure of the title complex, [Fe(C5H7O2)3] or Fe(acac)3, the asymmetric unit contains one mol-ecule in a general position. The coordination sphere of the Fe(III) atom is that of a slightly distorted octahedron. The crystal under investigation was a two-component pseudo-merohedral twin in the monoclinic system with a ß angle close to 90°. Twin law [100/0-10/00-1] reduced the R1 residual [I > 2σ(I)] from 0.0769 to 0.0312, and the mass ratio of twin components refined to 0.8913 (5):0.1087 (5). In the crystal, mol-ecules are arranged in sheets normal to [001] via non-classical C-H⋯O hydrogen bonding. No other significant inter-molecular inter-actions are observed. The structure is a new polymorph of Fe(acac)3 and is isotypic with one polymorph of its gallium analog.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA