Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(2): 159-170, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027767

RESUMO

Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank ( https://cellrank.org ) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.


Assuntos
Algoritmos , Biologia Computacional/métodos , Pâncreas Exócrino/citologia , Análise de Célula Única/métodos , Software , Animais , Diferenciação Celular/genética , Linhagem da Célula , Reprogramação Celular , Humanos , Pulmão/citologia , RNA , Regeneração
2.
Development ; 146(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31160421

RESUMO

Deciphering mechanisms of endocrine cell induction, specification and lineage allocation in vivo will provide valuable insights into how the islets of Langerhans are generated. Currently, it is ill defined how endocrine progenitors segregate into different endocrine subtypes during development. Here, we generated a novel neurogenin 3 (Ngn3)-Venus fusion (NVF) reporter mouse line, that closely mirrors the transient endogenous Ngn3 protein expression. To define an in vivo roadmap of endocrinogenesis, we performed single cell RNA sequencing of 36,351 pancreatic epithelial and NVF+ cells during secondary transition. This allowed Ngn3low endocrine progenitors, Ngn3high endocrine precursors, Fev+ endocrine lineage and hormone+ endocrine subtypes to be distinguished and time-resolved, and molecular programs during the step-wise lineage restriction steps to be delineated. Strikingly, we identified 58 novel signature genes that show the same transient expression dynamics as Ngn3 in the 7260 profiled Ngn3-expressing cells. The differential expression of these genes in endocrine precursors associated with their cell-fate allocation towards distinct endocrine cell types. Thus, the generation of an accurately regulated NVF reporter allowed us to temporally resolve endocrine lineage development to provide a fine-grained single cell molecular profile of endocrinogenesis in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/genética , Pâncreas/embriologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Linhagem da Célula , Células Endócrinas/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células Secretoras de Insulina/citologia , Camundongos , Regeneração , Transdução de Sinais , Células-Tronco/citologia , Proteínas Wnt/metabolismo
3.
Nature ; 535(7612): 430-4, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27398620

RESUMO

Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of ß-cells. Pancreatic ß-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature ß-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger ß-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for ß-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional ß-cell heterogeneity and induce ß-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional ß-cell mass in diabetic patients.


Assuntos
Ilhotas Pancreáticas/citologia , Animais , Biomarcadores/análise , Diferenciação Celular , Linhagem da Célula/genética , Polaridade Celular , Proliferação de Células , Humanos , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Via de Sinalização Wnt
4.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810480

RESUMO

Nkx6-1 is a member of the Nkx family of homeodomain transcription factors (TFs) that regulates motor neuron development, neuron specification and pancreatic endocrine and ß-cell differentiation. To facilitate the isolation and tracking of Nkx6-1-expressing cells, we have generated a novel Nkx6-1 Venus fusion (Nkx6-1-VF) reporter allele. The Nkx6-1-VF knock-in reporter is regulated by endogenous cis-regulatory elements of Nkx6-1 and the fluorescent protein fusion does not interfere with the TF function, as homozygous mice are viable and fertile. The nuclear localization of Nkx6-1-VF protein reflects the endogenous Nkx6-1 protein distribution. During embryonic pancreas development, the reporter protein marks the pancreatic ductal progenitors and the endocrine lineage, but is absent in the exocrine compartment. As expected, the levels of Nkx6-1-VF reporter are upregulated upon ß-cell differentiation during the major wave of endocrinogenesis. In the adult islets of Langerhans, the reporter protein is exclusively found in insulin-secreting ß-cells. Importantly, the Venus reporter activities allow successful tracking of ß-cells in live-cell imaging and their specific isolation by flow sorting. In summary, the generation of the Nkx6-1-VF reporter line reflects the expression pattern and dynamics of the endogenous protein and thus provides a unique tool to study the spatio-temporal expression pattern of this TF during organ development and enables isolation and tracking of Nkx6-1-expressing cells such as pancreatic ß-cells, but also neurons and motor neurons in health and disease.


Assuntos
Técnicas Citológicas , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/citologia , Pâncreas/metabolismo , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Genes Reporter , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/embriologia , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34830411

RESUMO

Synaptotagmin-13 (Syt13) is an atypical member of the vesicle trafficking synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) fluorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis-regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage, allowing their specific isolation by flow sorting. These findings demonstrate high expression levels of Syt13 in the endocrine lineages in three major organs harboring these secretory cells. Collectively, the Syt13-VF reporter mouse line provides a unique and reliable tool to dissect the spatio-temporal expression pattern of Syt13 and enables isolation of Syt13-expressing cells that will aid in deciphering the molecular functions of this protein in the neuroendocrine system.


Assuntos
Encéfalo/metabolismo , Intestinos/metabolismo , Pâncreas/metabolismo , Sinaptotagminas/genética , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Movimento Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/patologia , Ocitocina/genética , Sinaptotagminas/metabolismo , Tirosina 3-Mono-Oxigenase/genética
6.
Development ; 144(16): 2873-2888, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811309

RESUMO

The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.


Assuntos
Pâncreas/embriologia , Animais , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pâncreas/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671683

RESUMO

The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing ß-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the ß-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate ß-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of ß-cells and define their functional identity. Furthermore, we discuss different routes by which ß-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those ß-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature ß-cells from stem cells for cell-replacement therapy for diabetes treatment.


Assuntos
Diabetes Mellitus/terapia , Células Secretoras de Insulina/citologia , Diferenciação Celular , Transdiferenciação Celular , Diabetes Mellitus/metabolismo , Progressão da Doença , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Fenótipo , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 110(8): 3143-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382229

RESUMO

During the development of the central nervous system (CNS), oligodendrocytes wrap their plasma membrane around axons to form a multilayered stack of tightly attached membranes. Although intracellular myelin compaction and the role of myelin basic protein has been investigated, the forces that mediate the close interaction of myelin membranes at their external surfaces are poorly understood. Such extensive bilayer-bilayer interactions are usually prevented by repulsive forces generated by the glycocalyx, a dense and confluent layer of large and negatively charged oligosaccharides. Here we investigate the molecular mechanisms underlying myelin adhesion and compaction in the CNS. We revisit the role of the proteolipid protein and analyze the contribution of oligosaccharides using cellular assays, biophysical tools, and transgenic mice. We observe that differentiation of oligodendrocytes is accompanied by a striking down-regulation of components of their glycocalyx. Both in vitro and in vivo experiments indicate that the adhesive properties of the proteolipid protein, along with the reduction of sialic acid residues from the cell surface, orchestrate myelin membrane adhesion and compaction in the CNS. We suggest that loss of electrostatic cell-surface repulsion uncovers weak and unspecific attractive forces in the bilayer that bring the extracellular surfaces of a membrane into close contact over long distances.


Assuntos
Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Eletricidade Estática , Animais , Membrana Celular/metabolismo , Células Cultivadas , Bicamadas Lipídicas , Camundongos , Oligodendroglia/metabolismo , Ligação Proteica
9.
Cell Mol Life Sci ; 71(7): 1265-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24165921

RESUMO

Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.


Assuntos
Membrana Celular/metabolismo , Modelos Biológicos , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , Sequência de Aminoácidos , Membrana Celular/ultraestrutura , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Dados de Sequência Molecular , Proteína Básica da Mielina/química , Proteína Proteolipídica de Mielina/metabolismo , Proteína Proteolipídica de Mielina/fisiologia , Bainha de Mielina/química , Bainha de Mielina/ultraestrutura , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Alinhamento de Sequência
10.
Mol Metab ; 79: 101853, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103636

RESUMO

OBJECTIVE: The consequences of mutations in genes associated with monogenic forms of diabetes on human pancreas development cannot be studied in a time-resolved fashion in vivo. More specifically, if recessive mutations in the insulin gene influence human pancreatic endocrine lineage formation is still an unresolved question. METHODS: To model the extremely reduced insulin levels in patients with recessive insulin gene mutations, we generated a novel knock-in H2B-Cherry reporter human induced pluripotent stem cell (iPSC) line expressing no insulin upon differentiation to stem cell-derived (SC-) ß cells in vitro. Differentiation of iPSCs into the pancreatic and endocrine lineage, combined with immunostaining, Western blotting and proteomics analysis phenotypically characterized the insulin gene deficiency in SC-islets. Furthermore, we leveraged FACS analysis and confocal microscopy to explore the impact of insulin shortage on human endocrine cell induction, composition, differentiation and proliferation. RESULTS: Interestingly, insulin-deficient SC-islets exhibited low insulin receptor (IR) signaling when stimulated with glucose but displayed increased IR sensitivity upon treatment with exogenous insulin. Furthermore, insulin shortage did not alter neurogenin-3 (NGN3)-mediated endocrine lineage induction. Nevertheless, lack of insulin skewed the SC-islet cell composition with an increased number in SC-ß cell formation at the expense of SC-α cells. Finally, insulin deficiency reduced the rate of SC-ß cell proliferation but had no impact on the expansion of SC-α cells. CONCLUSIONS: Using iPSC disease modelling, we provide first evidence of insulin function in human pancreatic endocrine lineage formation. These findings help to better understand the phenotypic impact of recessive insulin gene mutations during pancreas development and shed light on insulin gene function beside its physiological role in blood glucose regulation.


Assuntos
Células Endócrinas , Células-Tronco Pluripotentes Induzidas , Humanos , Insulina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Pâncreas/metabolismo , Insulina Regular Humana/metabolismo , Células Endócrinas/metabolismo
11.
Mol Metab ; 83: 101915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492844

RESUMO

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Assuntos
Peso Corporal , Ingestão de Alimentos , Polipeptídeo Inibidor Gástrico , Camundongos Knockout , Obesidade , Receptores dos Hormônios Gastrointestinais , Receptores para Leptina , Animais , Masculino , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
12.
J Cell Sci ; 124(Pt 3): 447-58, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21242314

RESUMO

The transfer of antigens from oligodendrocytes to immune cells has been implicated in the pathogenesis of autoimmune diseases. Here, we show that oligodendrocytes secrete small membrane vesicles called exosomes, which are specifically and efficiently taken up by microglia both in vitro and in vivo. Internalisation of exosomes occurs by a macropinocytotic mechanism without inducing a concomitant inflammatory response. After stimulation of microglia with interferon-γ, we observe an upregulation of MHC class II in a subpopulation of microglia. However, exosomes are preferentially internalised in microglia that do not seem to have antigen-presenting capacity. We propose that the constitutive macropinocytotic clearance of exosomes by a subset of microglia represents an important mechanism through which microglia participate in the degradation of oligodendroglial membrane in an immunologically 'silent' manner. By designating the capacity for macropinocytosis and antigen presentation to distinct cells, degradation and immune function might be assigned to different subtypes of microglia.


Assuntos
Exossomos/metabolismo , Microglia/fisiologia , Oligodendroglia/metabolismo , Animais , Transporte Biológico , Genes MHC da Classe II , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pinocitose/fisiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
Nat Metab ; 5(9): 1615-1637, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37697055

RESUMO

Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin ß-cell ablation model. The ß-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that ß-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD ß-cells. We also report pathways that are shared between ß-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of ß-cell responses to different stressors, providing a roadmap for the understanding of ß-cell plasticity, compensation and demise.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Animais , Camundongos , Idoso , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Estreptozocina , Modelos Animais de Doenças
14.
Front Endocrinol (Lausanne) ; 14: 1286590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955006

RESUMO

Introduction: The molecular programs regulating human pancreatic endocrine cell induction and fate allocation are not well deciphered. Here, we investigated the spatiotemporal expression pattern and the function of the neurogenic differentiation factor 2 (NEUROD2) during human endocrinogenesis. Methods: Using Crispr-Cas9 gene editing, we generated a reporter knock-in transcription factor (TF) knock-out human inducible pluripotent stem cell (iPSC) line in which the open reading frame of both NEUROD2 alleles are replaced by a nuclear histone 2B-Venus reporter (NEUROD2nVenus/nVenus). Results: We identified a transient expression of NEUROD2 mRNA and its nuclear Venus reporter activity at the stage of human endocrine progenitor formation in an iPSC differentiation model. This expression profile is similar to what was previously reported in mice, uncovering an evolutionarily conserved gene expression pattern of NEUROD2 during endocrinogenesis. In vitro differentiation of the generated homozygous NEUROD2nVenus/nVenus iPSC line towards human endocrine lineages uncovered no significant impact upon the loss of NEUROD2 on endocrine cell induction. Moreover, analysis of endocrine cell specification revealed no striking changes in the generation of insulin-producing b cells and glucagon-secreting a cells upon lack of NEUROD2. Discussion: Overall, our results suggest that NEUROD2 is expendable for human b cell formation in vitro.


Assuntos
Células Secretoras de Insulina , Neuropeptídeos , Humanos , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Pâncreas , Neuropeptídeos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
15.
Nat Metab ; 5(12): 2075-2085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946085

RESUMO

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G , Glucose , Neurônios GABAérgicos/metabolismo , Ingestão de Alimentos
16.
J Biol Chem ; 286(1): 787-96, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20978131

RESUMO

Myelin formation is a multistep process that is controlled by a number of different extracellular factors. During the development of the central nervous system (CNS), oligodendrocyte progenitor cells differentiate into mature oligodendrocytes that start to enwrap axons with myelin membrane sheaths after receiving the appropriate signal(s) from the axon or its microenvironment. The signals required to initiate this process are unknown. Here, we show that oligodendrocytes secrete small membrane vesicles, exosome-like vesicles, into the extracellular space that inhibit both the morphological differentiation of oligodendrocytes and myelin formation. The inhibitory effects of exosome-like vesicles were prevented by treatment with inhibitors of actomyosin contractility. Importantly, secretion of exosome-like vesicles from oligodendrocytes was dramatically reduced when cells were incubated by conditioned neuronal medium. In conclusion, our results provide new evidence for small and diffusible oligodendroglial-derived vesicular carriers within the extracellular space that have inhibitory properties on cellular growth. We propose that neurons control the secretion of autoinhibitory oligodendroglial-derived exosomes to coordinate myelin membrane biogenesis.


Assuntos
Membrana Celular/metabolismo , Exossomos/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/citologia , Actomiosina/metabolismo , Animais , Camundongos , Bainha de Mielina/metabolismo , Fosforilação , Ratos
17.
Nat Commun ; 13(1): 4540, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927244

RESUMO

During pancreas development endocrine cells leave the ductal epithelium to form the islets of Langerhans, but the morphogenetic mechanisms are incompletely understood. Here, we identify the Ca2+-independent atypical Synaptotagmin-13 (Syt13) as a key regulator of endocrine cell egression and islet formation. We detect specific upregulation of the Syt13 gene and encoded protein in endocrine precursors and the respective lineage during islet formation. The Syt13 protein is localized to the apical membrane of endocrine precursors and to the front domain of egressing endocrine cells, marking a previously unidentified apical-basal to front-rear repolarization during endocrine precursor cell egression. Knockout of Syt13 impairs endocrine cell egression and skews the α-to-ß-cell ratio. Mechanistically, Syt13 is a vesicle trafficking protein, transported via the microtubule cytoskeleton, and interacts with phosphatidylinositol phospholipids for polarized localization. By internalizing a subset of plasma membrane proteins at the front domain, including α6ß4 integrins, Syt13 modulates cell-matrix adhesion and allows efficient endocrine cell egression. Altogether, these findings uncover an unexpected role for Syt13 as a morphogenetic driver of endocrinogenesis and islet formation.


Assuntos
Células Endócrinas , Ilhotas Pancreáticas , Integrinas , Morfogênese , Pâncreas , Sinaptotagminas/genética
18.
Nat Metab ; 4(8): 1071-1083, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35995995

RESUMO

Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR alfa , Alcanossulfonatos , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR alfa/agonistas , PPAR alfa/uso terapêutico , Fenilpropionatos
19.
Biophys J ; 101(11): 2713-20, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261060

RESUMO

Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed the biophysical properties of myelin membranes prepared from wild-type mice and from mouse mutants that are unable to form stable myelin. Using C-Laurdan and fluorescence correlation spectroscopy, we find that lipids are tightly organized and highly ordered in myelin isolated from wild-type mice, but not from shiverer and ceramide synthase 2 null mice. Furthermore, only myelin lipids from wild-type mice laterally segregate into physically distinct lipid phases in giant unilamellar vesicles in a process that requires very long chain glycosphingolipids. Taken together, our findings suggest that oligodendrocytes exploit the potential of lipids to self-segregate to generate a highly ordered membrane for electrical insulation of axons.


Assuntos
Lipídeos de Membrana/metabolismo , Modelos Biológicos , Bainha de Mielina/metabolismo , Animais , Difusão , Ácidos Graxos/análise , Lipídeos de Membrana/química , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Esfingolipídeos/metabolismo , Extratos de Tecidos
20.
Cell Signal ; 84: 110037, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975011

RESUMO

The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.


Assuntos
Neoplasias , Biossíntese de Proteínas , Aminoácidos/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA