Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260386

RESUMO

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Assuntos
Fabaceae/fisiologia , Pradaria , Internacionalidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Biodiversidade , Biomassa , Fabaceae/efeitos dos fármacos , Probabilidade
2.
J Anim Ecol ; 92(3): 723-737, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651036

RESUMO

Disturbance is a key driver of community assembly and patterns of diversity. Whereas successional changes in vegetation have been well-studied, postdisturbance successional patterns of wildlife communities remain poorly understood. Here, we investigated the roles of site age and habitat in shaping community assembly and the diversity of terrestrial mammals in Glacier Bay National Park, Alaska (GBNP), which has undergone the most rapid and extensive deglaciation in the world since the Little Ice Age. Deglaciation has extensively altered the landscape, opening up new habitat for recolonization by plants and animals. We used camera traps, small mammal trapping and vegetation surveys to investigate the patterns of mammalian succession and beta diversity following deglaciation, using a space-for-time substitution across 10 sites during summers 2017 and 2018. Site age and habitat characteristics were not strongly correlated (r < 0.46), allowing the influences of time since disturbance and habitat changes to be distinguished. PERMANOVA analyses indicated that mammal community assembly was more strongly influenced by site age than habitat, whereas habitat and age had similar effects on beta (between site) diversity. Beta diversity was higher for smaller, less mobile mammals than larger, more mobile mammals and was primarily driven by species turnover among sites, whereas relative turnover was much lower for larger mammals. A comprehensive review of historical distributions of mammals in GBNP supported our findings that species turnover is a driving influence of community assembly for smaller mammals. Our results indicate that body size of mammals may play an important role in shaping colonization patterns postdisturbance, likely via size-related differences in mobility. Patterns of wildlife community assembly may therefore not track vegetation succession following disturbances if there are barriers to movement or if dispersal ability is limited, highlighting the importance of incorporating landscape connectivity and species traits into wildlife conservation efforts following disturbances. This knowledge may improve predictions of mammalian community assembly following major disturbance events.


Assuntos
Animais Selvagens , Biodiversidade , Animais , Ecossistema , Mamíferos , Plantas
3.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34957674

RESUMO

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Biomassa , Eutrofização , Nitrogênio , Nutrientes
4.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278303

RESUMO

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Assuntos
Ecossistema , Pradaria , Biomassa , Biodiversidade , Plantas
5.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038782

RESUMO

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Assuntos
Pradaria , Herbivoria , Biodiversidade , Ecossistema , Nutrientes
6.
Nature ; 529(7586): 390-3, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26760203

RESUMO

How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.


Assuntos
Biodiversidade , Pradaria , Modelos Biológicos , Plantas/classificação , Plantas/metabolismo , Comportamento Competitivo , Geografia
7.
Nature ; 537(7618): 93-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556951

RESUMO

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Assuntos
Biodiversidade , Fertilizantes , Pradaria , Plantas/classificação , Plantas/metabolismo , Biomassa , Alimentos , Luz , Plantas/efeitos da radiação , Poaceae/classificação , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
8.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34240557

RESUMO

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Herbivoria , Nutrientes
9.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012421

RESUMO

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

10.
Nature ; 508(7497): 521-5, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24531763

RESUMO

Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.


Assuntos
Biodiversidade , Eutrofização , Fertilizantes/efeitos adversos , Poaceae , Animais , Biomassa , Clima , Eutrofização/efeitos dos fármacos , Geografia , Cooperação Internacional , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Fatores de Tempo
11.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670649

RESUMO

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Assuntos
Biodiversidade , Eutrofização/efeitos da radiação , Herbivoria/fisiologia , Luz , Plantas/metabolismo , Plantas/efeitos da radiação , Poaceae , Clima , Eutrofização/efeitos dos fármacos , Geografia , Atividades Humanas , Internacionalidade , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/efeitos da radiação , Fatores de Tempo
12.
Ecol Lett ; 21(9): 1364-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952114

RESUMO

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.


Assuntos
Herbivoria , Plantas , Biodiversidade
13.
Ecology ; 99(2): 399-410, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29131311

RESUMO

Parasitic plants can serve as critical intermediaries between their hosts and other organisms; however these relationships are not well understood. To investigate the relative importance of plant traits in such interactions, we studied the role of the root hemiparasite, Castilleja levisecta (Orobanchaceae), as a mediator of interactions between the host plants it parasitizes and the lepidopteran herbivore Euphydryas editha (Nymphalidae), whose caterpillars feed on Castilleja and sequester iridoid glycosides from it. We tested whether the hemiparasite's size, leaf N concentration, and iridoid glycoside concentrations were influenced by the identity of its host plant, and then whether these traits influenced outcomes for the herbivore. We found that the hemiparasite's size and leaf N depended on the host it parasitized, and these traits in turn affected outcomes for E. editha. Specifically, Euphydryas editha survival increased with hemiparasite size and caterpillar mass increased with leaf N; caterpillars with greater mass were more likely to survive during diapause. We also found preliminary evidence that host identity influenced iridoid glycoside sequestration by the herbivore. Mean iridoid glycoside concentrations in caterpillars ranged from 1-12% depending on the host being parasitized by Castilleja. This study demonstrates that root parasitism can result in strong indirect effects on higher trophic levels, influencing organisms' survival, growth, and chemical interactions.


Assuntos
Borboletas , Herbivoria , Animais , Interações Hospedeiro-Parasita , Glicosídeos Iridoides , Larva , Plantas
14.
Ecol Appl ; 27(3): 756-768, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27935663

RESUMO

Abiotic conditions, biotic factors, and disturbances can act as filters that control community structure and composition. Understanding the relative importance of these drivers would allow us to understand and predict the causes and consequences of changes in community structure. We used long-term data (1989-2002) from the sagebrush steppe in the state of Washington, USA, to ask three questions: (1) What are the key drivers of community-level metrics of community structure? (2) Do community-level metrics and functional groups differ in magnitude or direction of response to drivers of community structure? (3) What is the relative importance of drivers of community structure? The vegetation in 2002 was expressed as seven response variables: three community-level metrics (species richness, total cover, compositional change from 1989 to 2002) and the relative abundances of four functional groups. We used a multi-model inference framework to identify a set of top models for each response metric beginning from a global model that included two abiotic drivers, six disturbances, a biotic driver (initial plant community), and interactions between the disturbance and biotic drivers. We also used a permutational relative variable importance metric to rank the influence of drivers. Moisture availability was the most important driver of species richness and of native forb cover. Fire was the most important driver of shrub cover and training area usage was important for compositional change, but disturbances, including grazing, were of secondary importance for most other variables. Biotic drivers, as represented by the initial plant communities, were the most important driver for total cover and for the relative covers of exotics and native grasses. Our results indicate that the relative importance of drivers is dependent on the choice of metric, and that drivers such as disturbance and initial plant community can interact.


Assuntos
Biodiversidade , Pradaria , Plantas , Artemisia , Espécies Introduzidas , Poaceae , Washington
15.
Environ Manage ; 59(2): 338-353, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27848001

RESUMO

Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Agricultura Florestal/métodos , Florestas , Árvores , Comportamento Cooperativo , Tomada de Decisões , Ecologia , Estados Unidos
16.
Ecol Lett ; 18(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25430889

RESUMO

Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m(2) plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.


Assuntos
Biodiversidade , Pradaria , Plantas , Microbiologia do Solo , Archaea/classificação , Bactérias/genética , Biota , Fungos/genética , Modelos Lineares
17.
Sensors (Basel) ; 14(11): 20304-19, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25353981

RESUMO

We developed new vegetation indices utilizing terrestrial laser scanning (TLS) to quantify the three-dimensional spatial configuration of plant communities. These indices leverage the novelty of TLS data and rely on the spatially biased arrangement of a TLS point cloud. We calculated these indices from TLS data acquired within an existing long term manipulation of forest structure in Central Oregon, USA, and used these data to test for differences in vegetation structure. Results provided quantitative evidence of a significant difference in vegetation density due to thinning and burning, and a marginally significant difference in vegetation patchiness due to grazing. A comparison to traditional field sampling highlighted the novelty of the TLS based method. By creating a linkage between traditional field sampling and landscape ecology, these indices enable field investigations of fine-scale spatial patterns. Applications include experimental assessment, long-term monitoring, and habitat characterization.


Assuntos
Agricultura/métodos , Monitoramento Ambiental/métodos , Florestas , Imageamento Tridimensional/métodos , Lasers , Árvores/anatomia & histologia , Árvores/classificação , Agricultura/instrumentação , Algoritmos , Monitoramento Ambiental/instrumentação , Imageamento Tridimensional/instrumentação
18.
Ecol Lett ; 16(4): 513-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23347060

RESUMO

Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.


Assuntos
Poaceae/fisiologia , Animais , Ecossistema , Fertilizantes , Herbivoria , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional
19.
Glob Chang Biol ; 19(12): 3677-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038796

RESUMO

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.


Assuntos
Ecossistema , Espécies Introduzidas , Dispersão Vegetal , Poaceae/fisiologia , Biodiversidade
20.
Nat Commun ; 14(1): 3949, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402739

RESUMO

Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.


Assuntos
Pradaria , Herbivoria , Animais , Banco de Sementes , Solo , Plantas , Nutrientes , Ecossistema , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA