Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prog Neurobiol ; 219: 102372, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334647

RESUMO

Complex cognition requires coordinated neuronal activity at the network level. In mammals, this coordination results in distinct dynamics of local field potentials (LFP) central to many models of higher cognition. These models often implicitly assume a cortical organization. Higher associative regions of the brains of birds do not have cortical layering, yet single-cell correlates of higher cognition are very similar to those found in mammals. We recorded LFP in the avian equivalent of prefrontal cortex while crows performed a highly controlled and cognitively demanding working memory task. We found signatures in local field potentials, modulated by working memory. Frequencies of a narrow gamma and the beta band contained information about the location of target items and were modulated by working memory load. This indicates a critical involvement of these bands in ongoing cognitive processing. We also observed bursts in the beta and gamma frequencies, similar to those that play a vital part in 'activity silent' models of working memory. Thus, despite the lack of a cortical organization the avian associative pallium can create LFP signatures reminiscent of those observed in primates. This points towards a critical cognitive function of oscillatory dynamics evolved through convergence in species capable of complex cognition.


Assuntos
Ondas Encefálicas , Corvos , Animais , Memória de Curto Prazo/fisiologia , Telencéfalo , Córtex Pré-Frontal/fisiologia , Mamíferos
2.
Elife ; 102021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859781

RESUMO

Complex cognition relies on flexible working memory, which is severely limited in its capacity. The neuronal computations underlying these capacity limits have been extensively studied in humans and in monkeys, resulting in competing theoretical models. We probed the working memory capacity of crows (Corvus corone) in a change detection task, developed for monkeys (Macaca mulatta), while we performed extracellular recordings of the prefrontal-like area nidopallium caudolaterale. We found that neuronal encoding and maintenance of information were affected by item load, in a way that is virtually identical to results obtained from monkey prefrontal cortex. Contemporary neurophysiological models of working memory employ divisive normalization as an important mechanism that may result in the capacity limitation. As these models are usually conceptualized and tested in an exclusively mammalian context, it remains unclear if they fully capture a general concept of working memory or if they are restricted to the mammalian neocortex. Here, we report that carrion crows and macaque monkeys share divisive normalization as a neuronal computation that is in line with mammalian models. This indicates that computational models of working memory developed in the mammalian cortex can also apply to non-cortical associative brain regions of birds.


Working memory is the brain's ability to temporarily hold and manipulate information. It is essential for carrying out complex cognitive tasks, such as reasoning, planning, following instructions or solving problems. Unlike long-term memory, information is not stored and recalled, but held in an accessible state for brief periods. However, the capacity of working memory is very limited. Humans, for example, can only hold around four items of information simultaneously. There are various competing theories about how this limitation arises from the network of neurons in the brain. These models are based on studies of humans and other primates. But memory limitations are not exclusive to mammals. Indeed, the working memory of some birds, such as crows, has a similar capacity to humans despite the architecture of their brains being very different to mammals. So, how do brains with such distinct structural differences produce working memories with similar capacities? To investigate, Hahn et al. probed the working memory of carrion crows in a change detection task developed for macaque monkeys. Crows were trained to memorize varying numbers of colored squares and indicate which square had changed after a one second delay when the screen went blank. While the crows performed the task, Hahn et al. measured the activity of neurons in an area of the brain equivalent to the prefrontal cortex, the central hub of cognition in mammals. The experiments showed that neurons in the crow brain responded to the changing colors virtually the same way as neurons in monkeys. Hahn et al. also noticed that increasing the number of items the crows had to remember affected individual neurons in a similar fashion as had previously been observed in monkeys. This suggests that birds and monkeys share the same central mechanisms of, and limits to, working memory despite differences in brain architecture. The similarities across distantly related species also validates core ideas about the limits of working memory developed from studies of mammals.


Assuntos
Corvos/fisiologia , Macaca mulatta/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais
3.
Sci Rep ; 7(1): 8809, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821812

RESUMO

The present study compares the 'bandwidth of cognition' between crows and primates. Working memory is the ability to maintain and manipulate information over short periods of time - a core component of cognition. The capacity of working memory is tightly limited, in humans correlated with individual intelligence and commonly used synonymously with cognitive capacity. Crows have remarkable cognitive skills and while birds and mammals share neural principles of working memory, its capacity has not been tested in crows. Here we report the performance of two carrion crows on a working memory paradigm adapted from a recent experiment in rhesus monkeys. Capacity of crows is remarkably similar to monkeys and estimated at about four items. In both species, the visual hemifields show largely independent capacity. These results show that crows, like primates evolved a high-capacity working memory that reflects the result of convergent evolution of higher cognitive abilities in both species.


Assuntos
Comportamento Animal , Cognição , Corvos , Haplorrinos , Análise de Variância , Animais , Fixação Ocular , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA