RESUMO
Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.
Assuntos
Vírus da Dengue , Dengue , Proteínas de Membrana , Proteínas Nucleares , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologiaRESUMO
The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
Assuntos
Eixo Encéfalo-Intestino , COVID-19 , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Probióticos , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/complicações , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Probióticos/uso terapêuticoRESUMO
The interleukin (IL)-12 family consists of pro- and anti-inflammatory cytokines that are able to signal the activation of host antiviral immunity while preventing over-reactive immune reactions due to active virus replication and viral clearance. Amongst others, IL-12 and IL-23 are produced and released by innate immune cells such as monocytes and macrophages to signal the proliferation of T cells and release of effector cytokines, which subsequently activate host defence against virus infections. Interestingly, the dualities of IL-27 and -35 are evidently shown in the course of virus infections; they regulate the synthesis of cytokines and antiviral molecules, proliferation of T cells, and viral antigen presentation in order to maximize virus clearance by the host immune system. In terms of anti-inflammatory reactions, IL-27 signals the formation of regulatory T cells (Treg) which in turn secrete IL-35 to control the scale of inflammatory response that takes place during virus infections. Given the multitasking of the IL-12 family in regards to the elimination of virus infections, its potential in antiviral therapy is unequivocally important. Thus, this work aims to delve deeper into the antiviral actions of the IL-12 family and their applications in antiviral therapies.
Assuntos
Interleucina-27 , Viroses , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Interleucina-12 , Citocinas/fisiologia , Viroses/tratamento farmacológico , Viroses/prevenção & controle , Imunidade Inata/fisiologiaRESUMO
BACKGROUND: The malaria risk analysis of multiple populations is crucial and of great importance whilst compressing limitations. However, the exponential growth in diversity and accumulation of genetic variation data obtained from malaria-infected patients through Genome-Wide Association Studies opens up unprecedented opportunities to explore the significant differences between genetic markers (risk factors), particularly in the resistance or susceptibility of populations to malaria risk. Thus, this study proposes using statistical tests to analyse large-scale genetic variation data, comprising 20,854 samples from 11 populations within three continents: Africa, Oceania, and Asia. METHODS: Even though statistical tests have been utilized to conduct case-control studies since the 1950s to link risk factors to a particular disease, several challenges faced, including the choice of data (ordinal vs. non-ordinal) and test (parametric vs. non-parametric). This study overcomes these challenges by adopting the Mann-Whitney U test to analyse large-scale genetic variation data; to explore the statistical significance of markers between populations; and to further identify the highly differentiated markers. RESULTS: The findings of this study revealed a significant difference in the genetic markers between populations (p < 0.01) in all the case groups and most control groups. However, for the highly differentiated genetic markers, a significant difference (p < 0.01) was present for most genetic markers with varying p-values between the populations in the case and control groups. Moreover, several genetic markers were observed to have very significant differences (p < 0.001) across all populations, while others exist between certain specific populations. Also, several genetic markers have no significant differences between populations. CONCLUSIONS: These findings further support that the genetic markers contribute differently between populations towards malaria resistance or susceptibility, thus showing differences in the likelihood of malaria infection. In addition, this study demonstrated the robustness of the Mann-Whitney U test in analysing genetic markers in large-scale genetic variation data, thereby indicating an alternative method to explore genetic markers in other complex diseases. The findings hold great promise for genetic markers analysis, and the pipeline emphasized in this study can fully be reproduced to analyse new data.
Assuntos
Estudo de Associação Genômica Ampla , Malária , Marcadores Genéticos , Variação Genética , Humanos , Malária/genética , Estatísticas não ParamétricasRESUMO
Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1ß (IL-1ß) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1ß expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Regulação da Expressão Gênica , Interleucina-1beta/biossíntese , MicroRNAs/metabolismo , Estabilidade de RNA , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular Tumoral , Cricetinae , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genéticaRESUMO
Zika virus (ZIKV) is a mosquito borne flavivirus, which was a neglected tropical pathogen until it emerged and spread across the Pacific Area and the Americas, causing large human outbreaks associated with fetal abnormalities and neurological disease in adults. The factors that contributed to the emergence, spread and change in pathogenesis of ZIKV are not understood. We previously reported that ZIKV evades cellular antiviral responses by targeting STAT2 for degradation in human cells. In this study, we demonstrate that Stat2-/- mice are highly susceptible to ZIKV infection, recapitulate virus spread to the central nervous system (CNS), gonads and other visceral organs, and display neurological symptoms. Further, we exploit this model to compare ZIKV pathogenesis caused by a panel of ZIKV strains of a range of spatiotemporal history of isolation and representing African and Asian lineages. We observed that African ZIKV strains induce short episodes of severe neurological symptoms followed by lethality. In comparison, Asian strains manifest prolonged signs of neuronal malfunctions, occasionally causing death of the Stat2-/- mice. African ZIKV strains induced higher levels of inflammatory cytokines and markers associated with cellular infiltration in the infected brain in mice, which may explain exacerbated pathogenesis in comparison to those of the Asian lineage. Interestingly, viral RNA levels in different organs did not correlate with the pathogenicity of the different strains. Taken together, we have established a new murine model that supports ZIKV infection and demonstrate its utility in highlighting intrinsic differences in the inflammatory response induced by different ZIKV strains leading to severity of disease. This study paves the way for the future interrogation of strain-specific changes in the ZIKV genome and their contribution to viral pathogenesis.
Assuntos
Modelos Animais de Doenças , Infecção por Zika virus/imunologia , Zika virus/imunologia , Zika virus/patogenicidade , Animais , Inflamação/imunologia , Inflamação/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Zika virus/genéticaRESUMO
BACKGROUND: Astroviruses (AstVs) have been reported to infect and cause gastroenteritis in most animal species. Human AstVs were regarded the causative agent of viral diarrhea in children. In dogs, little is known about the epidemiology and clinical significance of AstV infection. FINDINGS: In this study, we collected and tested 253 rectal swabs from pet dogs; of which 64 samples (25.3%) tested positive for AstVs with diarrhea and 15 more samples (5.9%) also was identified as AstVs, however without any clinical signs. Phylogenetic analysis of 39 partial ORF1b sequences from these samples revealed that they are similar to AstVs, which can be subdivided into three lineages. Interestingly, out of the 39 isolates sequenced, 16 isolates are shown to be in the Mamastrovirus 5/canine astrovirus (CAstV) lineage and the remaining 23 isolates displayed higher similarities with known porcine astrovirus (PoAstV) 5 and 2. Further, analysis of 13 capsid sequences from these isolates showed that they are closely clustered with Chinese or Italy CAstV isolates. CONCLUSIONS: The findings indicate that CAstVs commonly circulate in pet dogs, and our sequencing results have shown the genomic diversity of CAstVs leading to increasing number of clusters.
Assuntos
Infecções por Astroviridae/veterinária , Portador Sadio/veterinária , Doenças do Cão/epidemiologia , Genótipo , Mamastrovirus/classificação , Mamastrovirus/isolamento & purificação , Animais , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/virologia , Portador Sadio/epidemiologia , Portador Sadio/virologia , China/epidemiologia , Análise por Conglomerados , Doenças do Cão/virologia , Cães , Feminino , Variação Genética , Masculino , Mamastrovirus/genética , Animais de Estimação , Filogenia , Prevalência , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genéticaRESUMO
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Assuntos
Doença de Mão, Pé e Boca , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Humanos , Enterovirus Humano A/genética , Enterovirus Humano A/patogenicidade , Enterovirus/classificação , Enterovirus/genética , China/epidemiologiaRESUMO
The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.
Assuntos
Ácido Dicloroacético , Glucose , Replicação Viral , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Ácido Dicloroacético/farmacologia , Replicação Viral/efeitos dos fármacos , Glucose/metabolismo , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Animais , Glicólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antivirais/farmacologiaRESUMO
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Assuntos
Vírus da Dengue , Dengue , MicroRNAs , Replicação Viral , MicroRNAs/genética , Vírus da Dengue/genética , Humanos , Dengue/imunologia , Dengue/virologia , Animais , Replicação Viral/genética , Aedes/virologia , Aedes/genéticaRESUMO
The study addressed a significant gap in the profiling and understanding of the gut microbiota's influence on Malaysian Malay women with gestational diabetes mellitus (GDM). This prospective cohort study aimed to explore the intricate relationship between gut microbiota, dietary choices, and lifestyle factors among Malay women, both with and without GDM. The research specifically focused on participants during the second (T0) and third (T1) trimesters of pregnancy in Johor Bahru, Malaysia. In Part 1 of the study, a diverse pool of pregnant women at T0 was categorized into two groups: those diagnosed with GDM and those without GDM, with a total sample size of 105 individuals. The assessments encompassed demographic, clinical, lifestyle, and dietary factors at the T0 and T1 trimesters. Part 2 of the study delved into microbiome analysis, targeting a better understanding of the gut microbiota among the participants. Stool samples were randomly collected from 50% of the individuals in each group (GDM and non-GDM) at T0 and T1. The collected samples underwent processing, and 16s rRNA metagenomic analysis was employed to study the microbial composition. The results suggested an association between elevated body weight and glucose levels, poor sleep quality, lack of physical activity, greater intake of iron and meat, and reduced fruit consumption among women with GDM compared to non-GDM groups. The microbiome analysis revealed changes in microbial composition over time, with reduced diversity observed in the GDM group during the third trimester. The genera Lactiplantibacillus, Parvibacter, Prevotellaceae UCG001, and Vagococcus positively correlated with physical activity levels in GDM women in the second trimester. Similarly, the genus Victivallis exhibited a strong positive correlation with gravida and parity. On the contrary, the genus Bacteroides and Roseburia showed a negative correlation with omega-3 polyunsaturated fatty acids (PUFAs) in women without GDM in the third trimester. The study highlighted the multifaceted nature of GDM, involving a combination of lifestyle factors, dietary choices, and changes in gut microbiota composition. The findings emphasized the importance of considering these interconnected elements in understanding and managing gestational diabetes among Malaysian Malay women. Further exploration is essential to comprehend the mechanisms underlying this relationship and develop targeted interventions for effective GDM management.
Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Gravidez , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Microbioma Gastrointestinal/genética , Estudos Prospectivos , RNA Ribossômico 16S/genética , Dieta , Estilo de VidaRESUMO
Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.
Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Anticorpos Antivirais , Hemaglutininas , Proteínas Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genéticaRESUMO
Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.
Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Humanos , Animais , Estados Unidos , Camundongos , Enterovirus Humano D/fisiologia , Doenças Neuromusculares/complicações , Mielite/complicações , Mielite/epidemiologia , Paralisia/complicaçõesRESUMO
PURPOSE OF REVIEW: Although gut microbiota have been associated with the etiology of some diseases, the influence of foods on gut microbiota, especially among pregnant women, remains unclear. Hence, a systematic review was performed to investigate the association between diet and gut microbiota and their influence on metabolic health in pregnant women. RECENT FINDINGS: We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.
Assuntos
Microbioma Gastrointestinal , Gravidez , Feminino , Humanos , Estudos Prospectivos , DietaRESUMO
BACKGROUND: Highly-pathogenic avian influenza (HPAI) H5N1 and Newcastle disease (ND) viruses are the two most important poultry viruses in the world, with the ability to cause classic central nervous system dysfunction in poultry and migratory birds. To elucidate the mechanisms of neurovirulence caused by these viruses, a preliminary study was design to analyze host's cellular responses during infections of these viruses. METHODS: An improved mRNA differential display technique (Gene Fishing™) was undertaken to analyze differentially expressed transcripts regulated during HPAI H5N1 and velogenic neurotropic NDV infections of whole brain of chickens. The identification of differentially expressed genes (DEGs) was made possible as this technique uses annealing control primers that generate reproducible, authentic and long PCR products that are detectable on agarose gels. RESULTS: Twenty-three genes were identified to be significantly regulated during infections with both viruses, where ten of the genes have been selected for validation using a TaqMan® based real time quantitative PCR assay. Some of the identified genes demonstrated to be key factors involving the cytoskeletal system, neural signal transduction and protein folding during stress. Interestingly, Septin 5, one of the genes isolated from HPAI H5N1-infected brain tissues has been reported to participate in the pathogenic process of Parkinson's disease. CONCLUSIONS: In this limited study, the differentially expressed genes of infected brain tissues regulated by the viruses were found not to be identical, thus suggesting that their neurovirulence and neuropathogenesis may not share similar mechanisms and pathways.
Assuntos
Encéfalo/patologia , Interações Hospedeiro-Patógeno , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Doença de Newcastle/patogenicidade , Transcriptoma , Animais , Galinhas , Perfilação da Expressão Gênica/métodosRESUMO
Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.
Assuntos
Microcefalia , Doenças do Sistema Nervoso , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Encéfalo/patologia , Humanos , Microcefalia/patologia , Doenças do Sistema Nervoso/patologia , Células-Tronco Neurais/patologia , Zika virus/fisiologiaRESUMO
Ocimum sanctum is a sacred herb of India and is commonly known as 'Tulsi' or 'Holy Basil' in regional languages of the country. Various parts of O. sanctum are recognised to have remarkable therapeutic efficacy, and are therefore used in Indian traditional medicine system, Ayurveda. Scientific studies have shown that O. sanctum has a range of pharmacological activities. The presence of a substantial amount of polyphenols in O. sanctum could be the reason for its excellent bioactivity. Polyphenols are used to prevent or treat oncologic diseases due to their anti-cancer effects, which are related to activation of apoptotic signaling, cell cycle arrest, binding ability with membrane receptors, and potential effects on immunomodulation and epigenetic mechanisms. The poor bioavailability of polyphenols restricts their clinical use. The application of nanonization has been implemented to improve their bioavailability, penetrability, and prolong their anticancer action. The present review analyses the recent preclinical studies related to the chemo-preventive and therapeutic potential of polyphenols present in O. sanctum. Moreover, the current article also examines in-depth the biochemical and molecular mechanisms involved in the antineoplastic actions of the considered polyphenols.
Assuntos
Antineoplásicos , Ocimum , Óleos Voláteis , Humanos , Ocimum sanctum , Polifenóis/farmacologia , Ocimum/química , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.
Assuntos
Flavivirus , Hepatite C Crônica , Vírus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Hepatite C Crônica/tratamento farmacológico , HumanosRESUMO
Zika virus (ZIKV) is a mosquito-borne, single-stranded RNA virus belonging to the genus Flavivirus. Although ZIKV infection is usually known to exhibit mild clinical symptoms, intrauterine ZIKV infections have been associated with severe neurological manifestations, including microcephaly and Guillain Barre syndrome (GBS). Therefore, it is imperative to understand the mechanisms of ZIKV entry into the central nervous system (CNS) and its effect on brain cells. Several routes of neuro-invasion have been identified, among which blood-brain barrier (BBB) disruption is the commonest mode of access. The molecular receptors involved in viral entry remain unknown; with various proposed molecular ZIKV-host interactions including potential non-receptor mediated cellular entry. As ZIKV invade neuronal cells, they trigger neurotoxic mechanisms via cell-autonomous and non-cell autonomous pathways, resulting in neurogenesis dysfunction, viral replication, and cell death, all of which eventually lead to microcephaly. Together, our understanding of the biological mechanisms of ZIKV exposure would aid in the development of anti-ZIKV therapies targeting host cellular and/or viral components to combat ZIKV infection and its neurological manifestations. In this present work, we review the current understanding of ZIKV entry mechanisms into the CNS and its implications on the brain. We also highlight the status of the drug repurposing approach for the development of potential antiviral drugs against ZIKV.
RESUMO
BACKGROUND: Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection. METHODS: Differentially expressed transcripts regulated in a H5N1 infections of whole lung organ of chicken, in-vitro chick embryo lung primary cell culture (CeLu) and a continuous Madin Darby Canine Kidney cell line was undertaken. An improved mRNA differential display technique (Gene Fishing™) using annealing control primers that generates reproducible, authentic and long PCR products that are detectable on agarose gels was used for the identification of differentially expressed genes (DEGs). Seven of the genes have been selected for validation using a TaqMan® based real time quantitative PCR assay. RESULTS: Thirty seven known and unique differentially expressed genes from lungs of chickens, CeLu and MDCK cells were isolated. Among the genes isolated and identified include heat shock proteins, Cyclin D2, Prenyl (decaprenyl) diphosphate synthase, IL-8 and many other unknown genes. The quantitative real time RT-PCR assay data showed that the transcription kinetics of the selected genes were clearly altered during infection by the Highly Pathogenic Avian Influenza virus. CONCLUSION: The Gene Fishing™ technique has allowed for the first time, the isolation and identification of sequences of host cellular genes regulated during H5N1 virus infection. In this limited study, the differentially expressed genes in the three host systems were not identical, thus suggesting that their responses to the H5N1 infection may not share similar mechanisms and pathways.