Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 244: 61-68, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108311

RESUMO

Landscape connectivity promotes dispersal and other types of movement, including foraging activity; consequently, the inclusion of connectivity concept is a priority in conservation and landscape planning in response to fragmentation. Urban planners expect the scientific community to provide them with an easy, but scientifically rigorous, method to identify highly connecting contexts in landscapes. The least-cost paths (LCP) method is one of the simplest resistance-based models that could be a good candidate to spatially identify areas where movement is potentially favored in a given landscape. We tested the efficiency of LCP predictions to detect highly connecting landscape contexts facilitating individual movements compared to those performed in un-connecting landscape contexts. We used a landscape-level behavioral experiment based on a translocation protocol and individual repeated measures. In the city of Rennes (France), 30 male hedgehogs (Erinaceus europaeus) were translocated and radio-tracked in both highly connecting and un-connecting contexts, respectively, which were determined by the presence and absence of modelled LCPs. Individual movement patterns were compared between the two predicted contexts. Individuals travelled longer distances, moved faster, and were more active in the highly connecting contexts compared to the un-connecting contexts. Moreover, in highly connecting contexts, hedgehog movement followed LCP orientation, with individuals using more wooded habitats than other land cover class. By using a rigorous experimental design, this study validated the ecological relevance of LCP analysis to identify highly connecting areas, and could be easily implemented by urban landscape planners.


Assuntos
Planejamento de Cidades , Ecologia , Cidades , Ecossistema , França , Humanos
2.
Mol Ecol ; 27(6): 1357-1370, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29412498

RESUMO

Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation-by-distance and isolation-by-resistance models for this land snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale-dependent processes.


Assuntos
Genética Populacional , Repetições de Microssatélites/genética , Caramujos/genética , Animais , Ecossistema , Meio Ambiente , Dinâmica Populacional , Caramujos/fisiologia
3.
Biodivers Data J ; 8: e50451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269479

RESUMO

BACKGROUND: The Biological Field Station of Paimpont (Station Biologique de Paimpont, SBP), owned by the University of Rennes and located in the Brocéliande Forest of Brittany (France), has been hosting student scientific research and field trips during the last 60 years. The study area of the SBP is a landscape mosaic of 17 ha composed of gorse moors, forests, prairies, ponds and creeks. Land use has evolved over time. Historical surveys by students and researchers focused on insects and birds. With this study, we aimed to increase the range of taxa observations, document changes in species composition and landscape and provide a basis for interdisciplinary research perspectives. We gathered historical data, implemented an all-taxon biodiversity inventory (ATBI) in different habitats of the SBP study area, measured abiotic factors in the air, water and soil and performed a photographical landscape observation during the BioBlitz held in July 2017. NEW INFORMATION: During the 24 h BioBlitz, organised by the SBP and the EcoBio lab from the University of Rennes and the French National Center of Scientific Research (CNRS), different habitats were individually sampled. Seventy-seven experts, accompanied by 120 citizens and 12 young people participating in the European Volunteer Service, observed, identified and databased 660 species covering 5 kingdoms, 8 phyla, 21 classes, 90 orders and 247 families. In total, there were 1819 occurrences including records identified to higher taxon ranks, thereby adding one more kingdom and four more phyla. Historical data collection resulted in 1176 species and 4270 occurrences databased. We also recorded 13 climatic parameters, 10 soil parameters and 18 water parameters during the BioBlitz. Current habitats were mapped and socio-ecological landscape changes were assessed with a diachronic approach using 32 historical photographs and historical maps. The coupling of historical biodiversity data with new biotic and abiotic data and a photographic comparison of landscape changes allows an integrative understanding of how the SBP changed from agriculturally-used land to a managed natural area within the last 60 years. Hence, this BioBlitz represents an important holistic sampling of biodiversity for studies on trophic webs or on trophic interactions or on very diverse, but connected, habitats. The integration of social, biotic and abiotic data opens innovative research opportunities on the evolution of socio-ecosystems and landscapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA