Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898281

RESUMO

De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.

2.
Mol Syst Biol ; 18(3): e10588, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35285572

RESUMO

The cell stress-responsive transcription factor p53 influences the expression of its target genes and subsequent cellular responses based in part on its dynamics (changes in level over time). The mechanisms decoding p53 dynamics into subsequent target mRNA and protein dynamics remain unclear. We systematically quantified p53 target mRNA and protein expression over time under two p53 dynamical regimes, oscillatory and rising, using RNA-sequencing and TMT mass spectrometry. Oscillatory dynamics allowed for a greater variety of dynamical patterns for both mRNAs and proteins. Mathematical modeling of empirical data revealed three distinct mechanisms that decode p53 dynamics. Specific combinations of these mechanisms at the transcriptional and post-transcriptional levels enabled exclusive induction of proteins under particular dynamics. In addition, rising induction of p53 led to higher induction of proteins regardless of their functional class, including proteins promoting arrest of proliferation, the primary cellular outcome under rising p53. Our results highlight the diverse mechanisms cells employ to distinguish complex transcription factor dynamics to regulate gene expression.


Assuntos
Transcriptoma , Proteína Supressora de Tumor p53 , Proteômica , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496615

RESUMO

De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.

4.
Elife ; 102021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33395388

RESUMO

The question of whether single cells can learn led to much debate in the early 20th century. The view prevailed that they were capable of non-associative learning but not of associative learning, such as Pavlovian conditioning. Experiments indicating the contrary were considered either non-reproducible or subject to more acceptable interpretations. Recent developments suggest that the time is right to reconsider this consensus. We exhume the experiments of Beatrice Gelber on Pavlovian conditioning in the ciliate Paramecium aurelia, and suggest that criticisms of her findings can now be reinterpreted. Gelber was a remarkable scientist whose absence from the historical record testifies to the prevailing orthodoxy that single cells cannot learn. Her work, and more recent studies, suggest that such learning may be evolutionarily more widespread and fundamental to life than previously thought and we discuss the implications for different aspects of biology.


Assuntos
Fenômenos Fisiológicos Celulares , Aprendizagem , Análise de Célula Única , Condicionamento Clássico
5.
ChemMedChem ; 15(18): 1752-1756, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32686307

RESUMO

DNA-encoded chemical libraries (DECLs) are collections of chemical moieties individually coupled to distinctive DNA barcodes. Compounds can be displayed either at the end of a single DNA strand (i. e., single-pharmacophore libraries) or at the extremities of two complementary DNA strands (i. e., dual-pharmacophore libraries). In this work, we describe the use of a dual-pharmacophore encoded self-assembly chemical (ESAC) library for the affinity maturation of a known 4,5-dihydrobenzodiazepinone ring (THBD) acetyl-lysine (KAc) mimic for the cyclic-AMP response element binding protein (CREB) binding protein (CREBBP or CBP) bromodomain. The new pair of fragments discovered from library selection showed a sub-micromolar affinity for the CREBBP bromodomain in fluorescence polarization and ELISA assays, and selectivity against BRD4(1).


Assuntos
Benzodiazepinonas/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Proteína de Ligação a CREB/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA