Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 136, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280596

RESUMO

BACKGROUND: Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom. RESULTS: Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition. CONCLUSIONS: Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Crotalus/genética , Filogenia , Venenos de Serpentes/genética , Venenos de Serpentes/química , Fenótipo , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/química
2.
Toxicon X ; 21: 100179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38144228

RESUMO

Predation has the potential to impart strong selective pressures on organisms within their environments, resulting in adaptive changes in prey that minimize risk of predation. Pressures from venomous snakes present an exceptional challenge to prey, as venom represents a unique chemical arsenal evolutionarily tailored to incapacitate prey. In response, venom resistance has been detected in various snake prey species, and to varying degrees. This study analyzes venom resistance in an eastern Colorado grassland habitat, where the Prairie Rattlesnake (Crotalus viridis) and Desert Massasauga Rattlesnake (Sistrurus tergeminus edwardsii) co-occur with a suite of grassland rodents. We test for venom resistance across rodent and snake pairings using two geographically distant field sites to determine the role of 1) predation pressure and trophic ecology, and 2) sympatric and allopatric patterns of venom resistance. Resistance was measured using serum-based metalloproteinase inhibition assays to determine potential inhibition of proteolytic activity, augmented by median lethal dose (LD50) assays on rodent species to assess toxicity of crude venoms. Resistance is present in several rodent species, with strong resistance present in populations of Eastern Woodrat (Neotoma floridana), Ord's Kangaroo Rat (Dipodomys ordii), and Northern Grasshopper Mouse (Onychomys leucogaster). Resistance is less developed in other species, including the House Mouse (Mus musculus) and Plains Pocket Mouse (Perognathus flavescens). An unexpected differential is present, where Lincoln County Kangaroo Rats are highly resistant to venom of co-occurring Prairie Rattlesnakes yet are sensitive to an allopatric population of Prairie Rattlesnakes in Weld County. Lincoln Co. Northern Grasshopper Mice also demonstrate extremely elevated resistance to Weld Co. Prairie Rattlesnake venoms, and they may possess resistance mechanisms for myotoxin a, an abundant component of Weld Co. C. v viridis venoms. This study illustrates the complexity of venom resistance in biological communities that can exist when incorporating multiple species interactions. Future studies aimed at characterizing resistance mechanisms at the molecular level will provide a more detailed physiological context for understanding mechanisms by which resistance to venoms occurs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA