RESUMO
The oxidation of thianthrene and 10-phenylphenothiazine into cation radicals has been examined using redox-active Lewis acids. The reaction of titanium(IV) tetrachloride with thianthrene in toluene produces a solution with an EPR spectrum indicative of oxidation of thianthrene to a cation radical, but the molecular compound (1) (µ-thianthrene)Ti2(µ-Cl2)Cl6 crystallized exclusively. Red crystalline (2) (µ-thianthrene)Ti2(µ-Br2)Br6 formed similarly from titanium(IV) tetrabromide. In contrast, the reaction of antimony(V) pentachloride with thianthrene in toluene yielded crystalline (3) (thianthrene·+)2(Sb2(µ-Cl)2Cl62-)·(SbCl3), while the same reaction in acetonitrile produced crystals of (4) (thianthrene·+)(SbCl6-). The two paramagnetic salts differ in that in (3), the folded (thianthrene·+) cation radicals self-associate, whereas in (4), the (thianthrene·+) cation radicals are isolated from one another and are planar. The reaction of 10-phenylphenothiazine with titanium(IV) tetrachloride in toluene solution resulted in the formation of crystalline paramagnetic (5) (10-phenylphenothiazine·+)(Ti(µ-Cl)3Cl6-) and the reaction of 10-phenylphenothiazine with tin(IV) tetrachloride produced paramagnetic (6) (10-phenylphenothiazine·+)(SnCl5-).
RESUMO
Treatment of an open-cage fullerene, designated as MMK-9, with (Ph3P)4Pt in toluene solution at room temperature allows a (PPh3)2Pt unit to be incorporated into the rim of the cage so that it becomes an integral part of the carbon cage skeleton. The structure of the adduct has been determined by single crystal X-ray diffraction and reveals that the platinum atom has planar PtC2P2 coordination, rather than the usual η2-bonding to an intact C-C double bond of the fullerene.
RESUMO
The first isolation and structural characterization of a series of chiral trinitrogen 1,3-bis(4,5-dihydrooxazol-2-ylimino)isoindoline-based pincer ligands are reported. Cadmium complexes, isolated as Cd(L2X)2 where L2X is the deprotonated form of L2XH = 1,3-bis(4,5-dihydro-4-(R)-phenyloxazol-2-ylimino)-isoindoline ((R,R)-5H) or 1,3-bis(4,5-dihydro-4-(S)-iso-propyloxazol-2-ylimino)isoindoline ((S,S)-6H) were prepared in situ via traditional or microwave-based techniques with the latter being more efficient but less able to be scaled up at this time. Ligands (R,R)-5H and (S,S)-6H were isolated via deligation from their respective cadmium complexes using a thiol-based ligand exchange protocol. The characterization of ligands and their respective cadmium complexes, in both the solid (X-ray crystallography) and solution (NMR spectroscopy) states are reported. Pd((S,S)-6)(OAc) is reported as a proof-of-concept of the ability to prepare 1 : 1 ligand to metal ratio complexes that are believed to be necessary as potential enantioselective catalysts.
RESUMO
Cocrystallization of NiII(OEP) (where OEP is the dianion of octaethylporphyrin) with C70 in p-xylene produces black plates of 12NiII(OEP)·12C70·18p-xylene (1). Single crystal X-ray diffraction at 90 K reveals that the crystal contains 42 individual, well-ordered molecules in the asymmetric unit with distinctive interactions between each NiII(OEP)/C70 pair and each pair of neighboring C70 molecules. Warming the crystal to 186 K produces a phase change so that only four NiII(OEP)/C70 sites and six p-xylene molecules are present. Under the same conditions CuII(OEP) cocrystallizes with C70 to form CuII(OEP)·C70·1.5p-xylene (2) with a much simpler structure consisting of one molecule of the porphyrin and the fullerene along with 1.5 molecules of p-xylene in the asymmetric unit. Crystallization of C70 from toluene in the presence of NiII(etioporphyrin-I) produces the black solvate 6C70·6toluene (3). It seems that C70 has a tendency to crystallize so that several orientations of the oblong molecule are present in the solid.