Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 20(7): 100-108, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31199568

RESUMO

PURPOSE: To evaluate the performance and stability of Elekta Agility multi-leaf collimator (MLC) leaf positioning using a daily, automated quality control (QC) test based on megavoltage (MV) images in combination with statistical process control tools, and identify special causes of variations in performance. METHODS: Leaf positions were collected daily for 13 Elekta linear accelerators over 11-37 months using the automated QC test, which analyzes 23 MV images to determine the location of MLC leaves relative to radiation isocenter. Leaf positioning stability was assessed using individual and moving range control charts. Specification levels of ±0.5, ±1, and ±1.5 mm were tested to determine positional accuracy. The durations between out-of-control and out-of-specification events were determined. Peaks in out-of-control leaf positions were identified and correlated to servicing events recorded for the whole duration of data collection. RESULTS: Mean leaf position error was -0.01 mm (range -1.3-1.6). Data stayed within ±1 mm specification for 457 days on average (range 3-838) and within ±1.5 mm for the entire date range. Measurements stayed within ±0.5 mm for 1 day on average (range 0-17); however, our MLC leaves were not calibrated to this level of accuracy. Leaf position varied little over time, as confirmed by tight individual (mean ±0.19 mm, range 0.09-0.43) and moving range (mean 0.23 mm, range 0.10-0.53) control limits. Due to sporadic out-of-control events, the mean in-control duration was 2.8 days (range 1-28.5). A number of factors were found to contribute to leaf position errors and out-of-control behavior, including servicing events, beam spot motion, and image artifacts. CONCLUSIONS: The Elekta Agility MLC model was found to perform with high stability, as evidenced by the tight control limits. The in-specification durations support the current recommendation of monthly MLC QC tests with a ±1 mm tolerance. Future work is on-going to determine if performance can be optimized further using high-frequency QC test results to drive recalibration frequency.


Assuntos
Modelos Estatísticos , Aceleradores de Partículas/instrumentação , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
Int J Radiat Biol ; 91(1): 54-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25004946

RESUMO

PURPOSE: In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. MATERIALS AND METHODS: EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. RESULTS: The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. CONCLUSIONS: In terms of EUD and TCP, the bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV varies. The results suggest, at least in a limiting sense, the potential for allowing some degree of dose heterogeneity within a CTV, although further investigation of the assumptions of the bystander model are warranted.


Assuntos
Efeito Espectador/efeitos da radiação , Modelos Biológicos , Neoplasias da Próstata/patologia , Doses de Radiação , Humanos , Masculino , Probabilidade , Dosagem Radioterapêutica , Carga Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA